【題目】已知數(shù)列{an}的首項(xiàng)a1=1,且滿足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 則a2017=

【答案】2015×22017+3
【解析】解:∵an+1﹣an≤n2n,an﹣an+2≤﹣(3n+2)2n,

∴an+1﹣an+2≤n2n﹣(3n+2)2n=﹣(n+1)2n+1.即an+2﹣an+1≥(n+1)2n+1

又an+2﹣an+1≤(n+1)2n+1

∴an+2﹣an+1=(n+1)2n+1

可得:an+1﹣an=n2n,(n=1時(shí)有時(shí)成立).

∴an=(an﹣an1)+(an1﹣an2)+…+(a2﹣a1)+a1

=(n﹣1)2n1+(n﹣2)2n2+…+222+2+1.

2an=(n﹣1)2n+(n﹣2)2n1+…+22+2,

可得:﹣an=﹣(n﹣1)2n+2n1+2n2+…+22+1= ﹣1﹣(n﹣1)2n

∴an=(n﹣2)2n+3.

∴a2017=201522017+3.

所以答案是:2015×22017+3.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2+ax+ 在( ,+∞)上是增函數(shù),則a的取值范圍是(
A.[﹣1,0]
B.[﹣1,+∞)
C.[0,3]
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若6x2+4y2+6xy=1,x,y∈R,則x2﹣y2的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,不等式 + 成立;在四邊形ABCD中,不等式 + + + 成立成立;在五邊形ABCDE中,不等式 + + + + 成立…,依此類推,在n邊形A1A2…An中,不等式不等式 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),x2<ex;
(3)證明:對任意給定的正數(shù)c,總存在x0 , 使得當(dāng)x∈(x0 , +∞)時(shí),恒有x<cex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xex﹣lnx(ln2≈﹣0.693, ≈1.648,均為不足近似值)
(1)當(dāng)x≥1時(shí),判斷函數(shù)f(x)的單調(diào)性;
(2)證明:當(dāng)x>0時(shí),不等式f(x)> 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a2 , a5 , a11成等比數(shù)列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)(1, ),離心率為 ,點(diǎn)A為橢圓C的右頂點(diǎn),直線l與橢圓相交于不同于點(diǎn)A的兩個(gè)點(diǎn)P(x1 , y1),Q(x2 , y2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) =0時(shí),求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+a+3:
(1)若函數(shù)y=f(x)在[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=x+b,當(dāng)a=3時(shí),若對任意的x1∈[1,4],總存在x2∈[5,8],使得g(x1)=f(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案