【題目】已知函數(shù)f(x)=ln x-.

(1)試討論f(x)在定義域上的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為,求a的值.

【答案】(1)見解析;(2)

【解析】試題分析:

(1)由題得f(x)的定義域?yàn)?/span>(0,+∞),且.分類討論可得當(dāng)a≥0時(shí),f(x)(0,+∞)上是單調(diào)遞增函數(shù).當(dāng)a<0時(shí),f(x)(0,-a]上為減函數(shù),在(a,+∞)上為增函數(shù).

(2)(1)可知: ,分類討論:①若a1f(x)minf(1),可得,不合題意;②若aef(x)minf(e),可得,不合題意;③若-e<a<1,f(x)minf(a),可得,符合題意.

試題解析:

(1)由題得f(x)的定義域?yàn)?/span>(0,+∞),且f′(x).

當(dāng)a≥0時(shí),f′(x)>0,故f(x)(0,+∞)上是單調(diào)遞增函數(shù).

當(dāng)a<0時(shí),由f′(x)0x=-a,由f′(x)>0得,x>a,由f′(x)<0得,x<a,

∴當(dāng)a<0時(shí),f(x)(0,-a]上為減函數(shù),在(a,+∞)上為增函數(shù).

(2)(1)可知:f′(x),

①若a1,則xa≥0,即f′(x)≥0[1e]上恒成立,此時(shí)f(x)[1e]上為增函數(shù),∴f(x)minf(1)=-a,a=-(舍去).

②若ae,則xa≤0,即f′(x)≤0[1,e]上恒成立,

此時(shí)f(x)[1,e]上為減函數(shù),∴f(x)minf(e)1,a=-(舍去).

③若-e<a<1,令f′(x)0,得x=-a,當(dāng)1<x<a時(shí),f′(x)<0,

f(x)(1,-a)上為減函數(shù);當(dāng)-a<x<e時(shí),f′(x)>0,

f(x)(a,e)上為增函數(shù),∴f(x)minf(a)ln(a)1a=-.

綜上可知:a=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=Acos(ωxφ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移個(gè)單位長度后得到函數(shù)f(x)的圖象.求:

(1)函數(shù)f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實(shí)數(shù)使以線段為直徑的圓經(jīng)過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元), 表示購機(jī)的同時(shí)購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買19個(gè)易損零件,或每臺(tái)都購買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買19個(gè)還是20個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若對任意的,總存在,使得,則實(shí)數(shù)的取值范圍是( )

A. B. C. D. 以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2015年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

a

第3組

30

b

第4組

20

第5組

10

合計(jì)

100

求出頻率分布表中a,b的值,再在答題紙上完成頻率分布直方圖;

根據(jù)樣本頻率分布直方圖估計(jì)樣本成績的中位數(shù);

高校決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,再從6名學(xué)生中隨機(jī)抽取2名學(xué)生由A考官進(jìn)行面試,求第4組至少有一名學(xué)生被考官A面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長為.

(1)設(shè)總造價(jià)(元)表示為長度的函數(shù);

(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入n,x的值分別為4,2,則輸出v的值為 (  )

A. 9B. 18C. 25D. 50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中是常數(shù),,函數(shù)的導(dǎo)函數(shù)為,且

,求曲線在點(diǎn)處的切線方程;

當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為,試求的值

查看答案和解析>>

同步練習(xí)冊答案