(天津卷理20)已知函數(shù),其中.
(Ⅰ)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(Ⅱ)討論函數(shù)的單調(diào)性;
本小題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、解不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力、綜合分析和解決問(wèn)題的能力.滿(mǎn)分12分.
(Ⅰ)解:,由導(dǎo)數(shù)的幾何意義得,于是.
由切點(diǎn)在直線上可得,解得.
所以函數(shù)的解析式為.
(Ⅱ)解:.
當(dāng)時(shí),顯然().這時(shí)在,上內(nèi)是增函數(shù).
當(dāng)時(shí),令,解得.
當(dāng)變化時(shí),,的變化情況如下表:
|
|
|
|
|
|
|
| + | 0 | - | - | 0 | + |
| ↗ | 極大值 | ↘ | ↘ | 極小值 | ↗ |
所以在,內(nèi)是增函數(shù),在,內(nèi)是減函數(shù).
(Ⅲ)解:由(Ⅱ)知,在上的最大值為與的較大者,對(duì)于任意的,不等式在上恒成立,當(dāng)且僅當(dāng),即,對(duì)任意的成立.
從而得,所以滿(mǎn)足條件的的取值范圍是.
(Ⅲ)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(天津卷理20)已知函數(shù),其中.
(Ⅰ)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(Ⅱ)討論函數(shù)的單調(diào)性;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com