【題目】關(guān)于函數(shù),下列命題中所有正確結(jié)論的序號是______.
①其圖象關(guān)于軸對稱; ②當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);
③的最小值是; ④在區(qū)間上是增函數(shù);
【答案】①③④
【解析】
對于①先求函數(shù)的定義域,然后通過判斷與的關(guān)系,可以確定其為偶函數(shù),①正確;對于②③④,先通過定義法求單調(diào)性,求出的單調(diào)區(qū)間,進(jìn)而利用復(fù)合函數(shù)單調(diào)性求出的單調(diào)區(qū)間,即可求出的最小值,可以確定②錯誤,③④正確。
函數(shù),定義域為,定義域關(guān)于原點對稱,,所以函數(shù)是偶函數(shù),圖象關(guān)于軸對稱,故①正確;
令,
函數(shù)在上單調(diào)遞減,證明如下:
任取,,且,
則,
因為,,所以,
而,,
所以,
故函數(shù)在上單調(diào)遞減。
同理可以證明函數(shù)在上單調(diào)遞增,
又因為在單調(diào)遞增,
利用復(fù)合函數(shù)單調(diào)性可知,在上單調(diào)遞減,在上單調(diào)遞增。
由于函數(shù)是偶函數(shù),可知在上單調(diào)遞增,在上單調(diào)遞減。
的最小值為.
所以②錯誤,③④正確。
綜上正確的結(jié)論是①③④.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組銷售數(shù)據(jù),如下表所示:
(已知, ).
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;(3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)中至少有1個是“好數(shù)據(jù)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設(shè)g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一個元素,求實數(shù)a的取值范圍;
(3)當(dāng)a>0時,對任意的t∈(,+∞),f(x2)在[t,t+1]的最大值與最小值的差不超過4,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面,四邊形為正方形,且, 為線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍是 ( ).
A. B.[-1,0] C.(-∞,-2] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二年級有甲、乙、丙三個班參加社會實踐活動,高二年級老師要分到各個班級帶隊,其中男女老師各一半,每次任選兩個老師,將其中一個老師分到甲班,如果這個老師是男老師,就將另一個老師分到乙班,否則就分到丙班,重復(fù)上述過程,直到所有老師都分到班級,則
A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師
C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點M為PC的中點,點E為BC邊上的點,且 =λ.
(1)求證:平面ADM⊥平面PBC;
(2)是否存在實數(shù)λ,使得二面角P﹣DE﹣B的余弦值為 ?若存在,求出實數(shù)λ的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com