【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(Ⅰ)求實數(shù), 的值;
(Ⅱ)若, , , ,試判斷, , 三者是否有確定的大小關(guān)系,并說明理由.
【答案】(Ⅰ) , ;(Ⅱ) ;理由見解析.
【解析】試題分析:
(Ⅰ) 由題意可得,求解可得結(jié)論;
(Ⅱ) 由(Ⅰ)知,(i) ,利用對數(shù)的運算性質(zhì)與基本不等式求解可得結(jié)論; (ii) , 設(shè)函數(shù), ,求導并判斷函數(shù)的單調(diào)性,易得結(jié)論; (iii) , 設(shè), ,同理求解即可.
試題解析:
(Ⅰ) .
由于所以, .
(Ⅱ)由(Ⅰ)知.
(i) ,
而,故
(ii) =.
設(shè)函數(shù), ,
則, .
當時, ,所以在上單調(diào)遞增;
又,因此在上單調(diào)遞增.
又,所以,即,即
(iii) =.
設(shè), .
則,有.
當時, ,所以在上單調(diào)遞增,有.
所以在上單調(diào)遞增.
又,所以,即,故
綜上可知:
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0),直線y=x+ 與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1 , F2為其左右焦點,P為橢圓C上的任意一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2 .
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點,直線∫過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高三期中考試的學生中抽出50名學生,并統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù)且滿分為100分),數(shù)學成績分組及樣本頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合計 | ③ | ④ |
(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學生提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學,共同幫助[40,50)中的某一位同學,已知甲同學的成績?yōu)?2分,乙同學的成績?yōu)?5分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連接球面上兩點的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2 和4 ,M、N分別是AB、CD的中點,兩條弦的兩端都在球面上運動,有下面四個命題:
①弦AB、CD可能相交于點M;
②弦AB、CD可能相交于點N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an+log2an}(n∈N*)的前10項和T10 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大。
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)不等式組 所表示的平面區(qū)域為Dn , 記Dn內(nèi)的格點(格點即橫坐標和縱坐標皆為整數(shù)的點)的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項和,求Sn;
(3)記 ,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雖然吸煙有害健康,但是由于歷史以及社會的原因,吸煙也是部分公民交際的重要媒介.世界衛(wèi)生組織1987年11月建議把每年的4月7日定為世界無煙日,且從1989年開始,世界無煙日改為每年的5月31日.某報社記者專門對吸煙的市民做了戒煙方面的調(diào)查,經(jīng)抽樣只有的煙民表示愿意戒煙,將頻率視為概率.
(1)從該市吸煙的市民中隨機抽取3位,求至少有一位煙民愿意戒煙的概率;
(2)從該市吸煙的市民中隨機抽取4位, 表示愿意戒煙的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com