【題目】已知關(guān)于的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍(

A. B.

C. D.

【答案】C

【解析】令f(x)=x3+ax2+bx+c

∵拋物線的離心率為1,∴1是方程f(x)=x3+ax2+bx+c=0的一個(gè)實(shí)根∴a+b+c=﹣1

∴c=﹣1﹣a﹣b代入f(x)=x3+ax2+bx+c,

可得f(x)=x3+ax2+bx﹣1﹣a﹣b=(x﹣1)(x2+x+1)+a(x+1)(x﹣1)+b(x﹣1)=(x﹣1)

設(shè)g(x)=x2+(a+1)x+1+a+b,則g(x)=0的兩根滿足0<x1<1,x2>1

∴g(0)=1+a+b>0,g(1)=3+2a+b<0

作出可行域,如圖所示

的幾何意義是區(qū)域內(nèi)的點(diǎn)與原點(diǎn)連線的斜率,∴故答案為:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=2時(shí),求f(x)在x∈[0,1]的最大值;
(2)當(dāng)0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)的圖象和直線無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:

①方程一定沒(méi)有實(shí)數(shù)根;②若,則不等式對(duì)一切實(shí)數(shù)都成立;

③若,則必存在實(shí)數(shù),使;④若,則不等式對(duì)一切實(shí)數(shù)都成立;⑤函數(shù)的圖象與直線也一定沒(méi)有交點(diǎn),其中正確的結(jié)論是__________.(寫(xiě)出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為(
A.π2
B.2π
C.π
D.4π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,m∈R.
(1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若f(x)在區(qū)間(﹣2,3)上是減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)用定義證明函數(shù)f(x)在(﹣∞,+∞)上為減函數(shù);
(2)若x∈[1,2],求函數(shù)f(x)的值域;
(3)若g(x)= ,且當(dāng)x∈[1,2]時(shí)g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的偶函數(shù),其導(dǎo)函數(shù)為,若對(duì)任意的實(shí)數(shù),都有恒成立,則使成立的實(shí)數(shù)的取值范圍為(  )

A. B. (﹣∞,﹣1)∪(1,+∞)

C. (﹣1,1) D. (﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)試討論的單調(diào)性;

(2)證明:對(duì)于正數(shù),存在正數(shù),使得當(dāng)時(shí),有

(3)設(shè)(1)中的的最大值為,求得最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案