已知向量,,設(shè)函數(shù),.
(Ⅰ)求的最小正周期與最大值;
(Ⅱ)在中, 分別是角的對(duì)邊,若的面積為,求的值.
(Ⅰ)的最小正周期為 ,的最大值為5;(Ⅱ) .
【解析】
試題分析:(Ⅰ)求的最小正周期與最大值,首先須求出的解析式,由已知向量,,函數(shù),可將代入,根據(jù)數(shù)量積求得,進(jìn)行三角恒等變化,像這一類(lèi)題,求周期與最大值問(wèn)題,常常采用把它化成一個(gè)角的一個(gè)三角函數(shù),即化成,利用它的圖象與性質(zhì),,求出周期與最大值,本題利用兩角和與差的三角函數(shù)公式整理成,從而求得的最小正周期與最大值;(Ⅱ)在中, 分別是角的對(duì)邊,若的面積為,求的值,要求的值,一般用正弦定理或余弦定理,本題注意到,由得,可求出角A的值,由已知,的面積為,可利用面積公式,求出,已知兩邊及夾角,可利用余弦定理求出,解此類(lèi)題,主要分清邊角關(guān)系即可,一般不難.
試題解析:(Ⅰ),∴ 的最小正周期為 ,的最大值為5.
(Ⅱ)由得,,即 ,∵ , ∴,
∴ ,又, 即, ∴ ,由余弦定理得,,∴
考點(diǎn):兩角和正弦公式,正弦函數(shù)的周期性與最值,根據(jù)三角函數(shù)的值求角,解三角形,考查學(xué)生的基本運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省威海市乳山一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省青島市黃島開(kāi)發(fā)區(qū)一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市潼南縣古溪中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年遼寧省沈陽(yáng)市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三第七次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量,,設(shè)函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)在中,若的面積為,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com