設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

(1) a1=1   (2) an=3·2n-1-2

解析解:(1)由題意a1=S1=T1,Tn=2Sn-n2,
令n=1得a1=2a1-1,∴a1=1.
(2)由Tn=2Sn-n2
得Tn-1=2Sn-1-(n-1)2(n≥2)②
①-②得Sn=2an-2n+1(n≥2),
驗(yàn)證n=1時(shí)也成立.
∴Sn=2an-2n+1③
則Sn-1=2an-1-2(n-1)+1(n≥2)④
③-④得an=2an-2an-1-2,
即an+2=2(an-1+2),
故數(shù)列{an+2}是公比為2的等比數(shù)列,首項(xiàng)為3,
所以an+2=3·2n-1,從而an=3·2n-1-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通項(xiàng)公式.
(2)若cn=anbn,{cn}的前n項(xiàng)和為Tn,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的首項(xiàng)不為零,前n項(xiàng)和為Sn,且對(duì)任意的rtN*,都有
(1)求數(shù)列{an}的通項(xiàng)公式(用a1表示);
(2)設(shè)a1=1,b1=3,,求證:數(shù)列為等比數(shù)列;
(3)在(2)的條件下,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列,其前項(xiàng)和滿足的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2) 符號(hào)表示不超過實(shí)數(shù)的最大整數(shù),記,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,3Sn=an-1(n∈N?).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn滿足6Sn+3an+2,且a1,a2,a6是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tna1bna2bn-1+…+anb1,n∈N*,證明:3Tn+1=2bn+1an+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,點(diǎn)均在直線上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),Tn是數(shù)列{bn}的前n項(xiàng)和,試求Tn;
(3)設(shè)cn=anbn,Rn是數(shù)列{cn}的前n項(xiàng)和,試求Rn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列滿足,且,其中.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù)m、n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案