【題目】如圖,在直三棱柱中,AB=BC,D、E分別為的中點.
(1)證明:ED為異面直線BB1與AC1的公垂線段;
(2)設(shè)AB=1, ,求二面角A1—AD—C1的大小.
【答案】(1)見解析;(2)60°.
【解析】試題分析:(1)設(shè)為中點,連接,先證明 是平行四邊形,再證明平面 ,從而可得平面 ,可得與直線與都垂直且相交,進(jìn)而可得結(jié)論;(2)連接作,垂足為,連接,根據(jù)二面角的平面角定義可知為二面角的平面角,在直角三角形中求出正切值即可得結(jié)果.
試題解析:(Ⅰ) 設(shè)O為AC中點,連接EO,BO,則EOC1C,又C1CB1B,所以EODB,EOBD為平行四邊形,ED∥OB.
∵AB=BC,∴BO⊥AC,
又平面ABC⊥平面ACC1A1,BO面ABC,故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1,
∴ED⊥BB1,ED為異面直線AC1與BB1的公垂線.
解:(Ⅱ)連接A1E,由AB=1,AA1=AC=可知,A1ACC1為正方形,
∴A1E⊥AC1,又由ED⊥平面ACC1A1和ED平面ADC1知平面
ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足為F,連接A1F,則A1F⊥AD,∠A1FE為二面角A1-AD-C1的平面角.
由已知AB=ED=1, AA1=AC=,∴AE=A1E=1,
EF==,
tan∠A1FE==,∴∠A1FE=60°.
所以二面角A1-AD-C1為60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求歲以下人數(shù)的分布列和期望;
(3)在接受調(diào)查的人中,有人給這項活動打出的分?jǐn)?shù)如下: , , , , , , , , , ,把這個人打出的分?jǐn)?shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), R.
(1)證明:當(dāng)時,函數(shù)是減函數(shù);
(2)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由;
(3)當(dāng),且時,證明:對任意,存在唯一的R,使得,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=,g(x)=x++a,其中a為常數(shù).
(1)若g(x)≥0的解集為{x|0<x或x≥3},求a的值;
(2)若x1∈(0,+∞),x2∈[1,2]使f(x1)≤g(x2)求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為和 ,過點的直線與橢圓相交于兩點,且,。
(1)求橢圓的離心率;
(2)設(shè)點C與點A關(guān)于坐標(biāo)原點對稱,直線上有一點在 的外接圓上,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選)某中學(xué)高一年級有20個班,每班50人;高二年級有30個班,每班45人.甲就讀于高一,乙就讀于高二.學(xué)校計劃從這兩個年級中共抽取235人進(jìn)行視力調(diào)查,下列說法中正確的有( )
A.應(yīng)該采用分層隨機(jī)抽樣法
B.高一、高二年級應(yīng)分別抽取100人和135人
C.乙被抽到的可能性比甲大
D.該問題中的總體是高一、高二年級的全體學(xué)生的視力
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù),若同時滿足下列三個條件:① ;② 當(dāng),且時,都有 ;③ 當(dāng),且時,都有, 則稱為“偏對稱函數(shù)”.現(xiàn)給出下列三個函數(shù): ; ; 則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com