7.命題:“對任意 x>0,ex>x+1”的否定是( 。
A.存在 x≤0,ex≤x+1B.存在 x>0,ex≤x+1
C.存在 x≤0,ex>x+1D.對任意 x>0,ex≤x+1

分析 利用全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以,命題:“對任意 x>0,ex>x+1”的否定是:存在 x>0,ex≤x+1.
故選:B.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求值化簡:
(1)$\frac{{1+\frac{1}{2}lg9-lg240}}{{1-\frac{2}{3}lg27+lg\frac{36}{5}}}$+1
(2)$\frac{{{{({a^{\frac{2}{3}}}•{b^{-1}})}^{-\frac{1}{2}}}•{a^{\frac{1}{2}}}•{b^{\frac{1}{3}}}}}{{\root{6}{{a•{b^5}}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合M={f(x)|存在非零常數(shù)k,對定義域中的任意x,等式f(kx)=$\frac{k}{2}$+f(x)恒成立}.現(xiàn)有兩個函數(shù):f(x)=ax+b(a≠0),g(x)=log2x,則函數(shù)f(x)、g(x)分別與集合M的關(guān)系為f(x)∉M,g(x)∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面θ截一球面得圓P,過該圓心P且與平面θ成60°二面角的平面γ截該球面得圓Q.若該球的半徑為$\sqrt{7}$,圓P的面積為3π,則該圓Q的面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求AE與D1F所成的角;
(2)證明:面AED⊥面A1FD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若tanθ=2,則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值為( 。
A.0B.1C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,用長為12m的鐵絲彎成下部為矩形,上部為半圓形的框架窗戶,若半圓半徑
為x.
(1)求此框架圍成的面積y與x的函數(shù)式y(tǒng)=f (x),
(2)半圓的半徑是多長時,窗戶透光的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.
商品名稱ABCDE
銷售額x(千萬元)35679
利潤額y(百萬元)23345
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.參考公式:
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a>0,函數(shù)f(x)=ax2-2ax+2lnx,g(x)=f(x)-2x.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論g(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案