【題目】已知P為△ABC內(nèi)一點,且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

【答案】D
【解析】解:如圖:設(shè)D、E 分別為BC、AC的中點,
=0,∴ =﹣3( + ),
=﹣3×2 =﹣6 ,
同理由( + )=﹣2( + ),即 2 =﹣2× ,
=﹣ .∴P到BC的距離等于A到BC的距離的
設(shè)△ABC的面積為S,則S2 = S.
P到AC的距離等于B到AC的距離的 ,
∴S3 = S.∴S1 =S﹣S2﹣S3 = S.
∴S1:S2:S3= S: S= S=3:1:2,
故選D.

根據(jù)已知的等式變形可得 =﹣6 =﹣ ,從而得出P到BC的距離等于A到BC的距離的 ,P到AC的距離等于B到AC的距離的 .從而有S2 = S,S3 = S,S1 =S﹣S2﹣S3 = S即可解決問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(文科)某出租車公司響應(yīng)國家節(jié)能減排的號召,已陸續(xù)購買了140輛純電動汽車作為運營車輛,目前我國主流純電動汽車按續(xù)駛里程數(shù)(單位:公里)分為3類,即, , .對這140輛車的行駛總里程進行統(tǒng)計,結(jié)果如下表:

(1)從這140輛汽車中任取1輛,求該車行駛總里程超過5萬公里的概率; (2)公司為了了解這些車的工作狀況,決定抽取14輛車進行車況分析,按表中描述的六種情況進行分層抽樣,設(shè)從類車中抽取了輛車. (。┣的值; (ⅱ)如果從這輛車中隨機選取2輛車,求恰有1輛車行駛總里程超過5萬公里的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題共l2分

如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1PA1C1,連接AP交棱CC1D

(Ⅰ)求證:PB1∥平面BDA1;

(Ⅱ)求二面角AA1DB的平面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]

(1)求頻率分布圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60]的受訪職工中,隨機抽取2人,求此2人評分都在[40,50]的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若,當對任意恒成立時, 的最大值為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次公里的自行車個人賽中,25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:

(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);

(2)若從總體中選取一個樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A、B、C的對邊分別為a、b、c,且b2+c2=a2+bc,求:
(1)2sinBcosC﹣sin(B﹣C)的值;
(2)若a=2,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定義在區(qū)間上的函數(shù)的圖象為, 、,且為圖象上的任意一點, 為坐標原點,當實數(shù)滿足時,記向量,若恒成立,則稱函數(shù)在區(qū)間上可在標準下線性近似,其中是一個確定的正數(shù).

(1)設(shè)函數(shù)在區(qū)間上可在標準下線性近似,求的取值范圍;

(2)已知函數(shù)的反函數(shù)為,函數(shù),( ),點,記直線的斜率為,若,問:是否存在,使成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案