分析 (Ⅰ)根據(jù)A、B、C成等差數(shù)列以及內(nèi)角和定理,求出B以及cosB的值;
(Ⅱ)解法一:根據(jù)正弦定理和同角的三角函數(shù)關(guān)系求出sinAsinC的值;解法二:結(jié)合題意,根據(jù)余弦定理求出△ABC是等邊三角形,即得sinAsinC的值.
解答 解:(Ⅰ)△ABC中,角A、B、C成等差數(shù)列,
∴2B=A+C,
又A+B+C=180°,
∴B=60°,cosB=$\frac{1}{2}$;
(Ⅱ)解法一:
由b2=ac,根據(jù)正弦定理得sin2B=sinAsinC,
又cosB=$\frac{1}{2}$,
∴sinAsinC=1-cos2B=$\frac{3}{4}$.
解法二:
由b2=ac及cosB=$\frac{1}{2}$,
根據(jù)余弦定理cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{{a}^{2}{+c}^{2}-ac}{2ac}$=$\frac{1}{2}$,
解得a=c,
∴B=A=C=60°,
∴sinAsinC=$\frac{3}{4}$.
點(diǎn)評(píng) 本題考查了正弦、余弦定理的應(yīng)用問題,也考查了等差數(shù)列的定義和內(nèi)角和定理的應(yīng)用問題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{2}{3})$ | B. | $(-∞,\frac{1}{2}]$ | C. | $(0,\frac{2}{3})$ | D. | $(0,\frac{1}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com