正三棱柱ABCA1B1C1中,已知AB=A1A,D為C1C的中點(diǎn),O為A1B與AB1的交點(diǎn).
(1)求證:AB1⊥平面A1BD;
(2)若點(diǎn)E為AO的中點(diǎn),求證:EC∥平面A1BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點(diǎn).
(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點(diǎn)M、N分別是PA、PB的中點(diǎn).求證:
(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點(diǎn)的等腰直角三角形,AB=1.現(xiàn)給出三個(gè)條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個(gè)作為已知條件,并證明:PA⊥平面ABC;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A是△BCD平面外的一點(diǎn),E,F(xiàn)分別是BC,AD的中點(diǎn).
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在空間四邊形中,分別是和上的點(diǎn),分別是和上的點(diǎn),且,求證:三條直線相交于同一點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ,CB的延長(zhǎng)線交于M,RQ,DB的延長(zhǎng)線交于N,RP,DC的延長(zhǎng)線交于K,
求證:M,N,K三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PA=AB=4,點(diǎn)N在線段PB上,且=.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.
(1)證明:平面平面;
(2)若AB=2AE,求異面直線BE與AC所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com