17.已知集合A={x|x>0},B={x|x2-2x-3<0},則A∩B=( 。
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:(x-3)(x+1)<0,
解得:-1<x<3,即B=(-1,3),
∵A=(0,+∞),
∴A∩B=(0,3),
故選:B.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在${(2x+\frac{a}{x^2})^5}$的展開式中x-4的系數(shù)為320,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S2017>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$f(x)=x{e^{ax}}-\frac{a}{2}{x^2}$-x+1,a≠0
(Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若?x0>1,使$f({x_0})<\frac{a}{2}$成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=xex+1的圖象在點(diǎn)(0,f(0))處的切線方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)z+$\frac{1}{z}$的虛部是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動的時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉
的時間(分鐘)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學(xué)生日均課外體育運(yùn)動時間在[40,60)上的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯誤的概率不超
過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
20110
合計(jì)
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望.
獨(dú)立性檢驗(yàn)界值表:
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.以下式子正確的個數(shù)是( 。
①($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$  ②(cosx)′=-sinx   ③(2x)′=2xln2  ④(lgx)′=$\frac{-1}{xln10}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA=$\frac{\sqrt{2}}{2}$,E為BC的中點(diǎn).
(1)證明:PE⊥ED;
(2)求二面角E-PD-A的大。

查看答案和解析>>

同步練習(xí)冊答案