分析:(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),分別討論①當(dāng)a=0時(shí)②當(dāng)0<a<
時(shí)③當(dāng)a=
時(shí)④當(dāng)a<0時(shí),⑤當(dāng)
<a<1時(shí),⑥當(dāng)a≥1時(shí)的情況,從而求出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
a=時(shí),根據(jù)函數(shù)的單調(diào)性,得出
f(x1)≥f(1)=-,又已知存在x
2∈[1,2],使f(x
1)≥g(x
2),從而
-≥g(x2)的最小值,求出b的范圍.
解答:
解:(Ⅰ)∵f′(x)=-
(x>0),
令g(x)=ax
2-x+1-a,
①當(dāng)a=0時(shí),g(x)=-x+1,當(dāng)x∈(0,1)時(shí),g(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),g(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
②當(dāng)0<a<
時(shí),由f′(x)=0,x
1=1,x
2=
-1.此時(shí)
-1>1>0,
列表如下:
由表格可知:函數(shù)f(x)在區(qū)間(0,1)和(
-1,+∞)上單調(diào)遞減,在區(qū)間(1,
-1)上單調(diào)遞增;
③當(dāng)a=
時(shí),x
1=x
2,此時(shí)f′(x)<0,函數(shù)f(x)在(0,+∞)單調(diào)遞減;
④當(dāng)a<0時(shí),由于
-1<0,則函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
⑤當(dāng)
<a<1時(shí),令f′(x)=
>0,得-ax
2+x+a-1>0,解得:
-1<x<1,
此時(shí)f(x)在(
-1,1)遞增,在(0,
-1)和(1,+∞)遞減;
⑥當(dāng)a≥1時(shí),由于
-1≤0,令f′(x)>0,得-ax
2+x-1+a>0,解得:0<x<1,
此時(shí)函數(shù)f(x)在(0,1)遞增,在(1,+∞)遞減;
綜上:當(dāng)a≤0時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
當(dāng)a=
時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
當(dāng)0<a<
時(shí),函數(shù)f(x)在區(qū)間(0,1)和(
-1,+∞)上單調(diào)遞減,在區(qū)間(1,
-1)上單調(diào)遞增.
當(dāng)
<a<1時(shí),f(x)在(
-1,1)遞增,在(0,
-1)和(1,+∞)遞減;
當(dāng)a≥1時(shí),函數(shù)f(x)在(0,1)遞增,在(1,+∞)遞減;
(Ⅱ)當(dāng)
a=時(shí),f(x)在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),
所以對(duì)任意x
1∈(0,2),有
f(x1)≥f(1)=-,
又已知存在x
2∈[1,2],使f(x
1)≥g(x
2),
所以
-≥g(x2)的最小值,最后答案為b>
.