(坐標(biāo)系與參數(shù)方程選做題)已知曲線(xiàn)C的參數(shù)方程是數(shù)學(xué)公式(φ為參數(shù),0≤φ<2π),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程是________.

ρ=2cosθ
分析:先求出曲線(xiàn)C的普通方程,再利用x=ρcosθ,y=ρsinθ代換求得極坐標(biāo)方程.
解答:由(φ為參數(shù),0≤φ<2π),得,
兩式平方后相加得(x-1)2+y2=1,…(4分)
∴曲線(xiàn)C是以(1,0)為圓心,半徑等于的圓.令x=ρcosθ,y=ρsinθ,
代入并整理得ρ=2cosθ.即曲線(xiàn)C的極坐標(biāo)方程是ρ=2cosθ. …(10分)
故答案為:ρ=2cosθ.
點(diǎn)評(píng):本題主要考查極坐標(biāo)方程、參數(shù)方程及直角坐標(biāo)方程的轉(zhuǎn)化.普通方程化為極坐標(biāo)方程關(guān)鍵是利用公式x=ρcosθ,y=ρsinθ,ρ=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,單位長(zhǎng)度一致的坐標(biāo)系下,已知曲線(xiàn)C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線(xiàn)C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線(xiàn)相切時(shí)實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線(xiàn)ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為
2
,
π
4
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線(xiàn)
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線(xiàn)ρsinθ=1(ρ∈R,0≤θ<π)交點(diǎn)M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過(guò)點(diǎn)P且平行于極軸的直線(xiàn)的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案