【題目】在某次數(shù)學(xué)考試中,從甲乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班樣本成績(jī)的莖葉圖如圖所示.

1)用樣本估計(jì)總體,若根據(jù)莖葉圖計(jì)算得甲乙兩個(gè)班級(jí)的平均分相同,求的值;

2)從樣本中任意抽取3名學(xué)生的成績(jī),若至少有兩名學(xué)生的成績(jī)相同的概率大于,則該班成績(jī)判斷為可疑.試判斷甲班的成績(jī)是否可疑?并說明理由.

【答案】172)甲班的成績(jī)可疑,見解析

【解析】

(1)求出甲、乙兩班的平均成績(jī)分別為 可求出的值.
(2)求出甲班至少有兩名學(xué)生的成績(jī)相同的概率為,然后根據(jù)條件作出判斷.

解:(1)設(shè)樣本中甲、乙兩班的平均成績(jī)分別為 ,則

2)甲班的成績(jī)可以,理由如下:

甲班成績(jī)相同的有:873人、752人、972

從樣本中任意抽取3名學(xué)生的成績(jī)中至少有兩名學(xué)生成績(jī)相同的概率為:

甲班的成績(jī)可疑

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,是它的上頂點(diǎn),點(diǎn)各不相同且均在橢圓上.

1)若恰為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),求的面積;

2)若,求證:直線過一定點(diǎn);

3)若,的外接圓半徑為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量用其質(zhì)量指標(biāo)值來衡量)質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:

配方的頻數(shù)分布表:

指標(biāo)值分組

[90,94

[94,98

[98,102

[102,106

[106,110]

頻數(shù)

8

20

42

22

8

配方的頻數(shù)分布表:

指標(biāo)值分組

[90,94

[94,98

[98,102

[102,106]

[106,110]

頻數(shù)

4

12

42

32

10

1)分別估計(jì)用配方、配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;

2)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(rùn)(單位:元)與其質(zhì)量指標(biāo)值的關(guān)系為,估計(jì)用配方生產(chǎn)的一件產(chǎn)品的利潤(rùn)大于的概率,并求用配方生產(chǎn)的上述件產(chǎn)品的平均利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn),且圓心在直線上,又直線與圓C交于P,Q兩點(diǎn).

1)求圓C的方程;

2)若,求實(shí)數(shù)的值;

(3)過點(diǎn)作直線,且交圓CM,N兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的導(dǎo)數(shù)的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,四邊形為正方形,為等邊三角形,中點(diǎn),平面與棱交于點(diǎn).

Ⅰ)求證:;

Ⅱ)求證:平面;

(III)記四棱錐的體積為,四棱錐的體積為,直接寫出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

1)經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取6個(gè),再?gòu)倪@6個(gè)中隨機(jī)抽取3個(gè),求這3個(gè)芒果中恰有1個(gè)在內(nèi)的概率.

3)某經(jīng)銷商來收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:

A:所有芒果以10/千克收購(gòu);

B:對(duì)質(zhì)量低于250克的芒果以2/個(gè)收購(gòu),高于或等于250克的以3/個(gè)收購(gòu),通過計(jì)算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購(gòu)作為一種新的消費(fèi)方式,因其具有快捷、商品種類齊全、性價(jià)比高等優(yōu)勢(shì)而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購(gòu)公司統(tǒng)計(jì)了近五年在本公司網(wǎng)購(gòu)的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中x=1”表示2015年,x=2”表示2016年,依次類推;y表示人數(shù))

x

1

2

3

4

5

y(萬人)

20

50

100

150

180

1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測(cè)到哪一年該公司的網(wǎng)購(gòu)人數(shù)能超過300萬人;

2)該公司為了吸引網(wǎng)購(gòu)者,特別推出玩網(wǎng)絡(luò)游戲,送免費(fèi)購(gòu)物券活動(dòng),網(wǎng)購(gòu)者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進(jìn). 若遙控車最終停在勝利大本營(yíng),則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券500元;若遙控車最終停在失敗大本營(yíng),則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券200. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、、第20格。遙控車開始在第0格,網(wǎng)購(gòu)者每拋擲一次骰子,遙控車向前移動(dòng)一次.若擲出奇數(shù),遙控車向前移動(dòng)一格(從)若擲出偶數(shù)遙控車向前移動(dòng)兩格(從),直到遙控車移到第19格勝利大本營(yíng))或第20格(失敗大本營(yíng))時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購(gòu)者參與游戲一次獲得免費(fèi)購(gòu)物券金額的期望值.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若,求函數(shù)的最值;

2)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案