如圖,ABCD是梯形,ABCD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E為PD的中點
(Ⅰ)求證:AE面PBC.
(Ⅱ)求直線AC與PB所成角的余弦值;
(Ⅲ)在面PAB內(nèi)能否找一點N,使NE⊥面PAC.若存在,找出并證明;若不存在,請說明理由.
(Ⅰ)取PC中點為F,連接EF,BF
又E為PD的中點,所以EFDC且EF=
1
2
DC
所以EFAB,且EF=AB,所以ABFE為平行四邊形(2分)
所以AEBF,因為AE?面PBC,所以AE面PBC(4分)
(Ⅱ)建立如圖所示的空間直角坐標系,
則A、B、C、D、P、E的坐標分別為A(0,0,0),
B(1,0,0),C(2,1,0),D(0,1,0),
P(0,0,3),E(0,
1
2
3
2
)(5分)
從而
AC
=(2,1,0),
PB
=(1,0,-3)
設(shè)
AC
PB
的夾角為θ,則
cosθ=
AC
PB
|
AC
|•|
PB
|
=-
2
5
,(7分)
∴AC與PB所成角的余弦值為
2
5
(8分)
(Ⅲ)在面ABCD內(nèi)過D作AC的垂線交AB于G,連PG,
設(shè)N為PG的中點,連NE,則NEDG,(10分)
∵DG⊥AC,DG⊥PA,∴DG⊥面PAC從而NE⊥面PAC(14分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l⊥平面α,有以下幾個判斷:
①若m⊥l,則mα,
②若m⊥α,則ml
③若mα,則m⊥l,
④若ml,則m⊥α,
上述判斷中正確的是(  )
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)試在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中點.
(1)求證:AC⊥B1D;
(2)若B1D⊥平面ACE,求
AA1
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求點D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐S-ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=
2

(I)求證:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,BD為AC邊上的高,BD=1,BC=AD=2,沿BD將△ABD翻折,使得∠ADC=30°,得幾何體B-ACD
(Ⅰ)求證:AC⊥平面BCD;
(Ⅱ)求點D到面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱錐P-ABC的側(cè)面PAB是等邊三角形,D是AB的中點,PC=BC=AC=2,PB=2
2

(1)證明:AB⊥平面PCD;
(2)求點C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,DC⊥平面ABC,EADC,AB=AC=AE=
1
2
DC,M為BD的中點.
(Ⅰ)求證:EM平面ABC;
(Ⅱ)求證:平面AEM⊥平面BDC.

查看答案和解析>>

同步練習冊答案