等差數(shù)列{an}中,a3+a4=9,a2a5=18,則a1a6=
 
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)可得得a2+a5=a3+a4=9,結(jié)合a2a5=18,可解得a2,a5的值,可得公差,進(jìn)而可得a1,a6,相乘可得.
解答: 解:由等差數(shù)列的性質(zhì)可得a2+a5=a3+a4=9,
又a2a5=18,所以a2、a5方程x2-9x+18=0兩個(gè)根,
解得
a2=3
a5=6
a2=6
a5=3

故可得數(shù)列的公差d=
a5-a2
5-2
=-1或1,
a1=2
a5=7
a1=7
a5=2
,
∴a1a6=14,
故答案為:14.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P(2,
3
)在直線x=
a2
b
上,線段PF1的垂直平分線經(jīng)過點(diǎn)F2.直線y=kx+m與橢圓E交于不同的兩點(diǎn)A,B,且橢圓E上存在點(diǎn)M,使
OA
+
OB
OM
,其中O是坐標(biāo)原點(diǎn),λ是實(shí)數(shù).
(1)求λ的取值范圍;
(2)當(dāng)λ取何值時(shí),△ABO的面積最大?最大面積等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an+log 
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-
m-1
x
-lnx,g(x)=
1
sinθ•x
+lnx在[1,+∞]上為增函數(shù),且θ∈(0,π),求解下列各題:
(1)求θ的取值范圍;
(2)若h(x)=f(x)-g(x)在(1,+∞)上為單調(diào)增函數(shù),求m的取值范圍;
(3)設(shè)φ(x)=
2e
x
,若在[1,e]上至少存在一個(gè)x0,f(x0)-g(x0)>φ(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx+lnx,其中m為常數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)m=-1時(shí),求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-3,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)盒子中裝有5張卡片,上面分別記著數(shù)字1,1,2,2,2,每張卡片從外觀上看毫無差異,現(xiàn)從盒子中有放回的任意取2張卡片,記下上面數(shù)字分別為X和Y,兩次所得數(shù)字之和記為M,即M=X+Y
(1)求隨機(jī)變量M的分布列和數(shù)學(xué)期望
(2)若規(guī)定所得數(shù)字之和為3即可獲得獎(jiǎng)品,先甲乙兩人各自玩了一次上面的游戲,試求兩人之中至少有一人獲得獎(jiǎng)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x-
π
4
)=
7
2
10
,x∈(
π
2
4

(1)求cosx的值
(2)求sin(2x+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+alnx.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)f(x)在區(qū)間[
1
e
,e]上最大值及最小值;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-5x+6=0},B={x|mx+1=0},寫出一個(gè)使B⊆A成立的充分非必要條件是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案