【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點, . 求證:
(1);
(2)求幾何體的最大體積.
【答案】(1)見解析(2)
【解析】試題分析:(1)根據(jù)面面垂直的判定定理,先證明BC⊥平面AA1C,再證得平面AA1C⊥平面BA1C;(2)由于是固定的,且,所以當(dāng)C點到AB的距離最大時,幾何體的體積有最大值。
試題解析:(1)證明:因為C是底面圓周上異于A,B的一點,AB是底面圓的直徑,
所以AC⊥BC.
因為AA1⊥平面ABC,BC平面ABC,所以AA1⊥BC,
而AC∩AA1=A,所以BC⊥平面AA1C.
又BC平面BA1C,所以平面AA1C⊥平面BA1C.
(2)解:在Rt△ABC中,當(dāng)AB邊上的高最大時,三角形ABC面積最大,
此時AC=BC.
此時幾何體取得最大體積.
則由AB2=AC2+BC2且AC=BC, 得,
所以體積為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)若點, 在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,P為對角線BD1的三等分點,P到各頂點的距離的不同取值有( 。
A.3個
B.4個
C.5個
D.6個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結(jié)論:
①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結(jié)論為 (注:把你認(rèn)為正確的結(jié)論的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線與曲線交于兩點,若點的直角坐標(biāo)為,
試求當(dāng)時, 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市文化部門為了了解本市市民對當(dāng)?shù)氐胤綉蚯欠裣矏郏瑥?5-65歲的人群中隨機抽樣了人,得到如下的統(tǒng)計表和頻率分布直方圖.
(1)寫出其中及和的值;
(2)若從第1,2,3,組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求抽取的2人年齡都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= , 若對任意給定的t∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2at2+at,則正實數(shù)a的最小值是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓
(1)過點的圓的切線只有一條,求的值及切線方程;
(2)若過點且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com