對于定義域和值域均為的函數(shù),定義,,…,,n=1,2,3,….滿足的點稱為f的階周期點.
(1)設(shè)則f的階周期點的個數(shù)是___________;
(2)設(shè)則f的階周期點的個數(shù)是__________   .
2,4

試題分析:(1)當x∈[0,1]時,=,由=x得,x=0,1,f的1階周期點的個數(shù)是2;
當x∈[0,1]時,=,由=x,得x=0,1,所以f的階周期點的個數(shù)是2.
(2)當x∈[0,]時,f1(x)=2x=x,解得x=0,
當x∈(,1]時,f1(x)=2-2x=x,解得x=,∴f的1階周期點的個數(shù)是2;
當x∈[0,]時,f1(x)=2x,f2(x)=4x=x,解得x=0;
當x∈(]時,f1(x)=2x,f2(x)=2-4x=x,解得x=;
當x∈( ]時,f1(x)=2-2x,f2(x)=-2+4x=x,解得x=;
當x∈(,1]時,f1(x)=2-2x,f2(x)=4-4x=x,解得x=.∴f的2階周期點的個數(shù)是22=4.
故答案為2,4.
點評:新定義問題是中檔題.解題時要認真審題,仔細解答,注意分類討論思想和等價轉(zhuǎn)化思想的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)的定義域為,且滿足為 奇函數(shù),為偶函數(shù),則下列說法中一定正確的有        
(1)的圖像關(guān)于直線對稱
(2)的周期為 
(3)  
(4)上只有一個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)).
(1)若函數(shù)處取得極大值,求的值;
(2)時,函數(shù)圖象上的點都在所表示的區(qū)域內(nèi),求的取值范圍;
(3)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù),在上是減少的,則的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),曲線在點M處的切線恰好與直線垂直。
(1)求實數(shù)的值;
(2)若函數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若解不等式;
(Ⅱ)如果,,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上兩個零點,則的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進行運輸,且須提前預(yù)訂.
現(xiàn)有貨運收費項目及收費標準表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標準表
運輸工具
運輸費單價:元/(噸•千米)
冷藏費單價:元/(噸•時)
固定費用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時,火車的速度為       千米/時:
(2)設(shè)每天用汽車和火車運輸?shù)目傎M用分別為(元)和(元),分別求、的函數(shù)關(guān)系式(不必寫出的取值范圍),及為何值時(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應(yīng)提前為下周預(yù)定哪種運輸工具,才能使每天的運輸總費用較省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)(xR)為奇函數(shù), f(2)="1," f(x+2)=f(x)+f(2),則f(3)等于(   )
A.B.1C.D.2

查看答案和解析>>

同步練習(xí)冊答案