μ |
v |
|
|
|
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
u |
v |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
m |
n |
A、α⊥β |
B、α∥β |
C、α、β相交但不垂直 |
D、以上均不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題
在四棱錐中,平面,底面為矩形,.
(Ⅰ)當(dāng)時,求證:;
(Ⅱ)若邊上有且只有一個點(diǎn),使得,求此時二面角的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分
又,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知時,存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時,底面ABCD為正方形,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,又………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知時,存在點(diǎn)Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年湖南省衡陽市高二第三次月考考試?yán)砜茢?shù)學(xué) 題型:選擇題
若平面α,β的法向量分別為u=(-2, 3,-5),v=(3,-1, 4),則( )
A.α∥β B.α⊥β
C.α、β相交但不垂直 D.以上均不正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com