分析:(1)利用向量的數(shù)量積公式得到數(shù)列遞推式,再寫一式,兩式相減,即可證得結(jié)論;
(2)先求出數(shù)列的通項(xiàng),利用bn+1≥bn,確定n的范圍,由此可得結(jié)論.
解答:(1)證明:∵
=(S
n,1),
=(-1,2a
n+2
n+1),
⊥
.
∴
-Sn+2an+2n+1=0∴
-Sn+1+2an+1+2n+2=0兩式相減可得
an+1=2an-2n+1,∴
=
-1
∴
-
=-1
∴數(shù)列
{}為等差數(shù)列;
(2)解:∵n=1時(shí),
-S1+2a1+21+1=0,∴a
1=-4,∴
=-2∴
=-2-(n-1)=-(n+1),
∴
bn=an=(2011-n)×2
n,
令b
n+1≥b
n,則(2010-n)×2
n+1≥(2011-n)×2
n,∴n≤2009
∴當(dāng)1≤n<2009時(shí),b
n+1>b
n,當(dāng)n=2009時(shí),b
n=b
n+1當(dāng)n>2009時(shí),b
n+1<b
n∴b
1<b
2<…<b
2009=b
2010>b
2011>…
∴n
0=2009或2010.
點(diǎn)評(píng):本題考查向量的數(shù)量積,考查數(shù)列遞推式,考查等差數(shù)列的證明.考查數(shù)列的通項(xiàng),正確求通項(xiàng)是關(guān)鍵.