6.已知函數(shù)f(x)=$\sqrt{x+1}$+2x,則f(x)的最小值是(  )
A.$-\frac{17}{8}$B.-2C.$-\frac{7}{8}$D.0

分析 設t=$\sqrt{x+1}$(t≥0),將原函數(shù)式轉化為關于t的二次函數(shù)式的形式,再利用二次函數(shù)的值域求出原函數(shù)的值域即可

解答 解:設t=$\sqrt{x+1}$(t≥0),則x=2t2+t-2
函數(shù)g(t)=2(t+$\frac{1}{4}$)2-$\frac{17}{8}$,(t≥0)
當t∈[0,+∞)上單調(diào)遞增
所以f(x)min=g(0)=-2,
故選:B.

點評 本題主要考查了利用換元法函數(shù)的值域,解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為1,2,3.從袋子中任取4個球(假設取到任何一個球的可能性相同).
(1)求取出的4個球中,含有編號為3的球的概率;
(2)在取出的4個球中,紅球編號的最大值設為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}$(sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-x(a>0且a≠1).
(1)若a=$\frac{1}{2}$,求f(x)的單調(diào)遞增區(qū)間;
(2)若a=2,求使f(x)<4成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}、{bn}滿足an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個零點,且a1=1,則b10=( 。
A.24B.32C.48D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an},各項an>0,公比為q.
(1)設bn=logcan(c>0,c≠1),求證:數(shù)列{bn}是等差數(shù)列,并求出該數(shù)列的首項b1及公差d;
(2)設(1)中的數(shù)列{bn}單調(diào)遞減,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=|log2x|在區(qū)間[m-2,2m]內(nèi)有定義且不是單調(diào)函數(shù),則m的取值范圍為(2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項和,則下列命題錯誤的是( 。
A.若d<0,則數(shù)列{Sn}有最大項
B.若數(shù)列{S}有最大項,則d<0
C.若數(shù)列{Sn}是遞增數(shù)列,則對任意n∈N*均有Sn>0
D.若對任意n∈N*均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c且面積為S,滿足S=$\frac{\sqrt{7}}{6}$bccosA
(1)求cosA的值;
(2)若a+c=10,C=2A,求b的值.

查看答案和解析>>

同步練習冊答案