設(shè)數(shù)列{xn}的所有項都是不等于1的正數(shù),前n項和為Sn,已知點Pn(xn,Sn)在直線y=kx+b上,(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn
(1)求證:數(shù)列{xn}是等比數(shù)列;
(2)如果yn=18-3n,求實數(shù)k,b的值;
(3)如果存在t,s∈N*,s≠t,使得點(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時,xn>1恒成立?若存在,求出M的最小值,若不存在,請說明理由.
分析:(1)由an+1=Sn+1-Sn著手考慮,把點Pn、Pn+1的坐標(biāo)代入直線y=kx+b,然后兩式相減得xn+1與xn的關(guān)系式,最后整理為等比數(shù)列的形式即可.
(2)由(1)知{xn}是等比數(shù)列,則根據(jù)條件消去yn得xn與n的關(guān)系式,此時與等比數(shù)列通項xn=x1qn-1相比較,易得x1與q,進(jìn)而可求得k與b.
(3)由{xn}是等比數(shù)列且yn=log0.5xn可得數(shù)列{yn}為等差數(shù)列;由ys、yt作差得數(shù)列{yn}是d=-2的等差數(shù)列;所以當(dāng)n>M時,xn>1恒成立問題應(yīng)利用yn=log0.5xn轉(zhuǎn)化為yn<0恒成立的問題;再把數(shù)列{yn}的首項用s、t的關(guān)系式表示出來,則可表示出數(shù)列{yn}的通項;最后列不等式組,解出M,即證明問題.
解答:解:(1)∵點Pn(xn,Sn),Pn+1(xn+1,Sn+1)都在直線y=kx+b上,
∴Sn=kxn+b,Sn+1=kxn+1+b
兩式相減得Sn+1-Sn=kxn+1-kxn,即xn+1=kxn+1-kxn,
∵常數(shù)k≠0,且k≠1,∴
xn+1
xn
=
k
k-1
(非零常數(shù))
∴數(shù)列xn是等比數(shù)列.
(2)由yn=log0.5xn,得xn=(
1
2
)yn=8n-6=8-58n-1
,
k
k-1
=8
,得k=
8
7

又Pn在直線上,得Sn=kxn+b,
令n=1得b=S1-
8
7
x1=-
1
7
x1=-
8-5
7

(3)∵yn=log0.5xn∴當(dāng)n>M時,xn>1恒成立等價于yn<0恒成立.
又yn=log0.5xn=log0.5(x1•qn-1)=nlog0.5q+log0.5
x1
q

∴數(shù)列{yn}為等差數(shù)列
∵存在t,s∈N*,使得(t,ys)和(s,yt)都在y=2x+1上,
∴ys=2t+1 ①,yt=2s+1 ②.
①-②得:ys-yt=2(t-s),
∵s≠t∴yn是公差d=-2<0的等差數(shù)列
①+②得:ys+yt=2(t+s)+2,
又ys+yt=y1+(s-1)•(-2)+y1+(t-1)•(-2)=2y1-2(s+t)+4
由2y1-2(s+t)+4=2(t+s)+2,得y1=2(t+s)-1>0,
即:數(shù)列{yn}是首項為正,公差為負(fù)的等差數(shù)列,
∴一定存在一個最小自然數(shù)M,使
yM≥0
yM+1<0
,即
2(t+s)-1+(M-1)(-2)≥0
2(t+s)-1+M(-2)<0

解得t+s-
1
2
<M≤t+s+
1
2
.∵M(jìn)∈N*,∴M=t+s.
即存在自然數(shù)M,其最小值為t+s,使得當(dāng)n>M時,xn>1恒成立.
點評:an+1=Sn+1-Sn是實現(xiàn)數(shù)列{an},由其前n項和Sn向an轉(zhuǎn)化的重要橋梁;要熟悉等差數(shù)列的解析式形式:an=An+B即一次函數(shù)型,等比數(shù)列的解析式形式為:an=Aqn指數(shù)型函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市泰興三中高三數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

設(shè)數(shù)列{xn}的所有項都是不等于1的正數(shù),前n項和為Sn,已知點Pn(xn,Sn)在直線y=kx+b上,(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn
(1)求證:數(shù)列{xn}是等比數(shù)列;
(2)如果yn=18-3n,求實數(shù)k,b的值;
(3)如果存在t,s∈N*,s≠t,使得點(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時,xn>1恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年浙江省杭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{xn}的所有項都是不等于1的正數(shù),前n項和為Sn,已知點Pn(xn,Sn)在直線y=kx+b上,(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn
(1)求證:數(shù)列{xn}是等比數(shù)列;
(2)如果yn=18-3n,求實數(shù)k,b的值;
(3)如果存在t,s∈N*,s≠t,使得點(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時,xn>1恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:杭州二模 題型:解答題

設(shè)數(shù)列{xn}的所有項都是不等于1的正數(shù),前n項和為Sn,已知點Pn(xn,Sn)在直線y=kx+b上,(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn
(1)求證:數(shù)列{xn}是等比數(shù)列;
(2)如果yn=18-3n,求實數(shù)k,b的值;
(3)如果存在t,s∈N*,s≠t,使得點(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時,xn>1恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{xn}的所有項都是不等于1的正數(shù),前n項和為Sn,已知點Pn(xn,Sn)在直線y=kx+b上(其中,常數(shù)k≠0,且k≠1),又yn=log0.5xn.

(1)求證:數(shù)列{xn}是等比數(shù)列;

(2)如果yn=18-3n,求實數(shù)k,b的值;

(3)如果存在t,s∈N*,s≠t,使得點(t,ys)和(s,yt)都在直線y=2x+1上,試判斷,是否存在自然數(shù)M,當(dāng)n>M時,xn>1恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案