20.已知集合A={x|(x+2)(x-5)>0},B={x|m≤x<m+1},且B⊆(∁RA),則實(shí)數(shù)m的取值范圍是-2≤m≤4.

分析 化簡(jiǎn)集合A,求出∁RA,再根據(jù)B⊆(∁RA)求出m的取值范圍.

解答 解:集合A={x|(x+2)(x-5)>0}={x|x<-2或x>5},
∴∁RA={x|-2≤x≤5},
∵集合B={x|m≤x<m+1},且B⊆(∁RA),
∴$\left\{\begin{array}{l}{-2≤m}\\{m+1≤5}\end{array}\right.$,
解得-2≤m≤4,
∴實(shí)數(shù)m的取值范圍是-2≤m≤4.
故答案為:-2≤m≤4.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.由n(n≥2)個(gè)不同的數(shù)構(gòu)成的數(shù)列a1,a2,…an中,若1≤i<j≤n時(shí),aj<ai(即后面的項(xiàng)aj小于前面項(xiàng)ai),則稱ai與aj構(gòu)成一個(gè)逆序,一個(gè)有窮數(shù)列的全部逆序的總數(shù)稱為該數(shù)列的逆序數(shù).如對(duì)于數(shù)列3,2,1,由于在第一項(xiàng)3后面比3小的項(xiàng)有2個(gè),在第二項(xiàng)2后面比2小的項(xiàng)有1個(gè),在第三項(xiàng)1后面比1小的項(xiàng)沒(méi)有,因此,數(shù)列3,2,1的逆序數(shù)為2+1+0=3;同理,等比數(shù)列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8}$的逆序數(shù)為4.
(1)計(jì)算數(shù)列${a_n}=-2n+19(1≤n≤100,n∈{N^*})$的逆序數(shù);
(2)計(jì)算數(shù)列${a_n}=\left\{\begin{array}{l}{({\frac{1}{3}})^n},n為奇數(shù)\\-\frac{n}{n+1},n為偶數(shù)\end{array}\right.$(1≤n≤k,n∈N*)的逆序數(shù);
(3)已知數(shù)列a1,a2,…an的逆序數(shù)為a,求an,an-1,…a1的逆序數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x}+1,x<2}\\{{x^2}+px,x≥2}\end{array}}\right.$,若f(f(0))=5p,則p的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,${S_n}=\frac{4}{3}({a_n}-1)$,則數(shù)列$\{a_n^2\}$的前n項(xiàng)和Tn=$\frac{{1{6^{n+1}}-16}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若f(x)=ax2+3a是定義在[a2-5,a-1]上的偶函數(shù),令函數(shù)g(x)=f(x)+f(1-x),則函數(shù)g(x)的定義域?yàn)閇0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).例如函數(shù)$y=\sqrt{x}$在[1,9]上就具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2-2x+2在[1,2]上是否具有“DK”性質(zhì)?說(shuō)明理由;
(2)若g(x)=x2-ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若實(shí)數(shù)a、b、c滿足3a=4b=6c,則下列等式成立的是( 。
A.$\frac{1}{a}+\frac{1}$=$\frac{1}{c}$B.$\frac{2}{a}+\frac{1}$=$\frac{2}{c}$C.$\frac{1}{a}+\frac{2}$=$\frac{1}{c}$D.$\frac{1}{a}+\frac{1}$=$\frac{2}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線C:x2=2py(p>0)上一點(diǎn)A(m,4)到其焦點(diǎn)的距離為$\frac{17}{4}$.
(Ⅰ)求p和m的值;
(Ⅱ)設(shè)B(-1,1),過(guò)點(diǎn)B任作兩直線A1B1,A2B2,與拋物線C分別交于點(diǎn)A1,B1,A2,B2,過(guò)A1,B1的拋物線C的兩切線交于P,過(guò)A2,B2的拋物線C的兩切線交于Q,求PQ的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.閱讀下列程序框圖,該程序輸出的結(jié)果是28.

查看答案和解析>>

同步練習(xí)冊(cè)答案