【題目】已知函數(shù)f(x)=(1-2x)(x2-2).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線y=4x+b是函數(shù)y=f(x)圖象的一條切線,求b的值.
【答案】(1)f(x)的單調(diào)遞增區(qū)間為(-,1),單調(diào)遞減區(qū)間為(-,-),(1,+),
極小值為f(-)=-,極大值為f(1)=1.(2)b=-2或-
【解析】分析:(1)求出導(dǎo)函數(shù)f'(x)=-6x2+2x+4.令f'(x)= 0,求出極值點(diǎn),列出表格即可求得單調(diào)區(qū)間和極值。
(2)設(shè)出切點(diǎn),根據(jù)切點(diǎn)既在直線上又在導(dǎo)函數(shù)上,可求得切點(diǎn)的坐標(biāo);代入直線方程即可求出b的值。
詳解:(1)因?yàn)?/span>f'(x)=-2(x2-2)+(1-2x)·2x=-6x2+2x+4.
令f'(x)=0,得3x2-x-2=0,解得x=-或x=1.
x | (-,-) | - | (-,1) | 1 | (1,+) |
f'(x) | - | 0 | + | 0 | - |
g(x) | ↘ | 極小值 | ↗ | 極大值 | ↘ |
所以f(x)的單調(diào)遞增區(qū)間為(-,1),單調(diào)遞減區(qū)間為(-,-),(1,+),
極小值為f(-)=-,極大值為f(1)=1.
(2)因?yàn)?/span>f'(x)=-6x2+2x+4,
直線y=4x+b是f(x)的切線,設(shè)切點(diǎn)為(x0,f(x0)),
貝f'(x0)=-6x+2x0+4=4,
解得x0=0或x0=.
當(dāng)x0=0時(shí),f(x0)=-2,代入直線方程得b=-2,
當(dāng)x0=時(shí),f(x0)=-,代入直線方程得b=-.
所以b=-2或-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓N:x2+(y+ )2=36,P是圓N上的點(diǎn),點(diǎn)Q在線段NP上,且有點(diǎn)D(0, )和DP上的點(diǎn)M,滿足 =2 , =0.
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為 的直線l與(1)中所求Q的軌跡交于不同兩點(diǎn)A、B,又點(diǎn)C( ,2),求△ABC面積最大值時(shí)對(duì)應(yīng)的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2-x)=f(x-1),且方程f(x)=x有兩個(gè)相等的實(shí)根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]與[2m,2n],若存在,求出m,n的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓C1:+=1,C2:+=1(a>b>0)有相同的離心率,F(xiàn)(﹣ , 0)為橢圓C2的左焦點(diǎn),過點(diǎn)F的直線l與C1、C2依次交于A、C、D、B四點(diǎn).
(1)求橢圓C2的方程;
(2)求證:無論直線l的傾斜角如何變化恒有|AC|=|DB|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若對(duì)任意x≥1,不等式f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營(yíng)銷和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化.某調(diào)查機(jī)構(gòu)隨機(jī)抽取8名購(gòu)物者進(jìn)行采訪,4名男性購(gòu)物者中有3名傾向于網(wǎng)購(gòu),1名傾向于選擇實(shí)體店,4名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店.
(1)若從8名購(gòu)物者中隨機(jī)抽取2名,其中男女各一名,求至少1名傾向于選擇實(shí)體店的概率:
(2)若從這8名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量的貢獻(xiàn)率, 越接近于1,表示回歸效果越好;②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;④對(duì)分類變量與,它們的隨機(jī)變量的觀測(cè)值來說, 越小,“與有關(guān)系”的把握程度越大.其中正確命題的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)若,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域?yàn)?/span>[logmm(β-1),logm(α-1)]?若存在,求出此時(shí)m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com