16.求值:cos2α+cos2β+sin2αsin2β-cos2αcos2β

分析 提取公因式,利用同角三角函數(shù)的基本關(guān)系,求得所給式子的值.

解答 解:cos2α+cos2β+sin2αsin2β-cos2αcos2β=cos2α(1-cos2β)+cos2β+sin2α•sin2β
=cos2α•sin2β+cos2β+sin2α•sin2β=sin2β(cos2α+sin2β)+cos2β=1.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知角α的終邊經(jīng)過點P(-3,4).
(1)求$\frac{sin(π-α)+cos(-α)}{tan(π+α)}$的值;     
 (2)求$\frac{1}{2}$sin2α+cos2α+1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$ 化簡后等于( 。
A.3$\overrightarrow{AB}$B.$\overrightarrow{BA}$C.$\overrightarrow{AB}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.(1)已知$g(x)=\sqrt{x}$,求曲線g(x)在點(4,2)處的切線方程;
(2)已知函數(shù)f(x)=x3-3x,過點A(0,16)作曲線y=f(x)的切線,求此切線方程.
(3)求函數(shù)f(x)=x2-x-lnx的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.用數(shù)學歸納法證明:1+a+a2+…+an+1=$\frac{{1-}^{{a}^{n+2}}}{1-a}$(a≠1),在驗證n=1時,左端計算所得的式子是( 。
A.1B.1+aC.1+a+a2D.1+a+a2+a3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{a}$=$\frac{\sqrt{3}cosB}{sinA}$.
(Ⅰ)求角B的大;
(Ⅱ)若b=2$\sqrt{3}$,△ABC的面積為2$\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知兩個等差數(shù)列{an}和{bn}的前n項和之比為$\frac{7n+1}{4n+27}(n∈{N^*})$,則$\frac{{{a_{11}}}}{{{b_{11}}}}$等于(  )
A.$\frac{78}{71}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在平面直角坐標系xOy中,拋物線y2=4x的焦點為F,準線交x軸于點H,過H作直線l交拋物線于A,B兩點,且|BF|=2|AF|,則△ABF的面積為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知正項數(shù)列{an}中,a2=6,且$\frac{1}{{{a_1}+1}}$,$\frac{1}{{{a_2}+2}}$,$\frac{1}{{{a_3}+3}}$,成等差數(shù)列,則a1+3a3的最小值6+8$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案