4.已知$\overrightarrow a=({sin\frac{ω}{2}x,sinωx}),\overrightarrow b=({sin\frac{ω}{2}x,\frac{1}{2}})$,其中ω>0,若函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是( 。
A.$({0,\frac{1}{8}}]$B.$({0,\frac{5}{8}}]$C.$({0,\frac{1}{8}}]∪[{\frac{5}{8},1}]$D.$({0,\frac{1}{8}}]∪[{\frac{1}{4},\frac{5}{8}}]$

分析 利用兩角和與差的三角函數(shù)化簡函數(shù)的解析式,利用函數(shù)的零點以及函數(shù)的周期,列出不等式求解即可.

解答 解:$\overrightarrow a=({sin\frac{ω}{2}x,sinωx}),\overrightarrow b=({sin\frac{ω}{2}x,\frac{1}{2}})$,其中ω>0,
則函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$=sin2($\frac{ω}{2}$x)+$\frac{1}{2}$sinωx-$\frac{1}{2}$=$\frac{1}{2}$-$\frac{1}{2}$cosωx+$\frac{1}{2}$sinωx-$\frac{1}{2}$=$\sqrt{2}$sin(ωx-$\frac{π}{4}$),
可得T=$\frac{2π}{ω}$≥π,0<ω≤2,f(x)在區(qū)間(π,2π)內(nèi)沒有零點,結(jié)合三角函數(shù)可得,
$\left\{\begin{array}{l}{πω-\frac{π}{4}≥0}\\{2πω-\frac{π}{4}≤π}\end{array}\right.$或$\left\{\begin{array}{l}{πω-\frac{π}{4}≥π}\\{2πω-\frac{π}{4}≤2π}\end{array}\right.$,
解得$\frac{1}{4}$≤ω≤$\frac{5}{8}$或0<ω≤$\frac{1}{8}$,
故選:D.

點評 本題考查函數(shù)的零點個數(shù)的判斷,三角函數(shù)的化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.各項均不為零的數(shù)列{an}的前n項和為Sn. 對任意n∈N*,$\overrightarrow{m_n}=({a_{n+1}}-{a_n},\;2{a_{n+1}})$都是直線y=kx的法向量.若$\lim_{n→∞}{S_n}$存在,則實數(shù)k的取值范圍是(-∞,-1)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,M為最高點,該圖象與y軸交于點F(0,$\sqrt{2}$),與x軸交于點B,C,且△MBC的面積為π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(α-$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某一算法框圖如圖所示,則輸出的S值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)隨機變量X~N(2,1),則P(|X|<1)=( 。
附:(若隨機變量ξ~N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.72%)
A.13.59%B.15.73%C.27.18%D.31.46%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=$\frac{{2+ln{x^2}}}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式ex(2x3-3x2)-lnx-ax>1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足z2=-4,則|1+z|=( 。
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

同步練習(xí)冊答案