16.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt,x>\sqrt{2}}\\ \frac{1}{3},x≤\sqrt{2}\end{array}\right.$,若$f({x_0})>\frac{1}{2}$,則x0的取值范圍為x0>$\sqrt{2}$.

分析 x>$\sqrt{2}$,f(x)=lnx|${\;}_{1}^{e}$=1,利用$f({x_0})>\frac{1}{2}$,可得x0的取值范圍.

解答 解:x>$\sqrt{2}$,f(x)=lnx|${\;}_{1}^{e}$=1,
∵$f(x)=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt,x>\sqrt{2}}\\ \frac{1}{3},x≤\sqrt{2}\end{array}\right.$,$f({x_0})>\frac{1}{2}$,
∴x0>$\sqrt{2}$,
故答案為x0>$\sqrt{2}$.

點(diǎn)評(píng) 本題考查分段函數(shù),考查不等式的解法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線x-$\sqrt{3}$y=3的傾斜角的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.雙曲線$\frac{x^2}{m}-{y^2}=1$的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則m=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=2sin(3ωx+$\frac{π}{3}$),其中ω>0
(1)若f(x+θ)是周期為2π的偶函數(shù),求ω及θ的值;
(2)若f(x)在(0,$\frac{π}{3}$]上是增函數(shù),求ω的最大值;
(3)當(dāng)ω=$\frac{2}{3}$時(shí),將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個(gè)零點(diǎn),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上頂點(diǎn)M與左、右焦點(diǎn)F1,F(xiàn)2構(gòu)成三角形MF1F2面積為$\sqrt{3}$,又橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,左右頂點(diǎn)分別為P,Q.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)D(m,0)(m∈(-2,2),m≠0)作兩條射線分別交橢圓C于A,B兩點(diǎn)(A,B在長(zhǎng)軸PQ同側(cè)),直線AB交長(zhǎng)軸于點(diǎn)S(n,0),且有∠ADP=∠BDQ.求證:mn為定值;
(3)橢圓C的下頂點(diǎn)為N,過(guò)點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖均為全等的等腰直角三角形,如果直角三角形的斜邊長(zhǎng)為$\sqrt{2}$,那么這個(gè)幾何體的體積是(  )
A.$\frac{{3+\sqrt{3}}}{2}$B.$3+\sqrt{3}$C.$\frac{1}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在側(cè)棱長(zhǎng)為$2\sqrt{3}$的正三棱錐S-ABC中,∠ASB=∠BSC=∠CSA=40°,過(guò)A作截面AMN,交SB于M,交SC于N,則截面AMN周長(zhǎng)的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲乙兩人下棋比賽,規(guī)定誰(shuí)比對(duì)方先多勝兩局誰(shuí)就獲勝,比賽立即結(jié)束;若比賽進(jìn)行完6局還沒(méi)有分出勝負(fù)則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過(guò)程中,每局比賽甲獲勝的概率為$\frac{2}{3}$,乙獲勝的概率為$\frac{1}{3}$,每局比賽相互獨(dú)立.求:
(1)比賽兩局就結(jié)束且甲獲勝的概率;
(2)恰好比賽四局結(jié)束的概率;
(3)在整個(gè)比賽過(guò)程中,甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)全市30萬(wàn)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超過(guò)x的部分按議價(jià)收費(fèi),并希望約80%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值,并估計(jì)全市居民中月均用量不低于3噸的人數(shù);
(2)若每組內(nèi)部,用水量視為均勻分布,估計(jì)x的值(精確到0.1).

查看答案和解析>>

同步練習(xí)冊(cè)答案