解關(guān)于x的不等式(ax-1)(x-1)<0.
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:對(duì)a分類討論,利用一元二次不等式的解法即可得出.
解答: 解:當(dāng)a=0時(shí),不等式化為x-1>0,解得x>1;
當(dāng)a>0時(shí),不等式化為(x-
1
a
)
(x-1)<0,
當(dāng)a>1時(shí),不等式的解集為{x|
1
a
<x<1
};
當(dāng)a=1時(shí),不等式化為(x-1)2<0,其解集為∅;
當(dāng)0<a<1時(shí),不等式的解集為{x|1<x
1
a
}.
當(dāng)a<0時(shí),不等式化為(x-
1
a
)
(x-1)>0,不等式的解集為{x|x>1或x
1
a
}.
點(diǎn)評(píng):本題考查了一元二次不等式的解法,考查了分類討論的思想方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(5,1,3)、B(1,6,2)、C(5,0,4)、D(4,0,6),求過(guò)AD且垂直于平面ABC的一個(gè)法向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為2x+y=0,且頂點(diǎn)到漸近線的距離為
2
5
5
.  
(1)求此雙曲線的方程;
(2)設(shè)點(diǎn)P為雙曲線上一點(diǎn),A、B兩點(diǎn)在雙曲線的漸近線上,且分別位于第一、第二象限,若
AP
=
PB
,求△AOP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,x},集合B={0,x2},若A=B,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

﹙Ⅰ﹚求值:tan23°+tan37°+
3
tan23°tan37°;
﹙Ⅱ﹚求值:(tan60°-tan10°)sin40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式組:
4-x2≤0    
2x2-7x-15<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均不為0的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
S1+2
a1
+
S2+2
a2
+…+
Sn+2
an
=2n(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=2,bn+1-2bn=nan+1(n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出函數(shù)y=sin(2x-
π
6
)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=kx+b在區(qū)間[1,2]上的最大值比最小值大2,則k的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案