【題目】已知橢圓的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與坐標(biāo)原點(diǎn)距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓相交于C、D兩點(diǎn),試判斷是否存在k值,使以CD為直徑的圓過定點(diǎn)E?若存在求出這個(gè)k值,若不存在說明理由.
【答案】(1)(2)存在。
【解析】
試題(1)先由兩點(diǎn)式求出直線方程,再根據(jù)離心率和點(diǎn)到直線距離公式列出方程解出,即可求得;(2)假設(shè)存在這樣的直線,聯(lián)立直線方程和橢圓方程,消去y,得到x的一元二次方程,求出兩根之和和兩根之積,要使以CD為直徑的圓過點(diǎn)E,當(dāng)且僅當(dāng)CE⊥DE時(shí),則,再利用y=kx+2,將上式轉(zhuǎn)化,最后求得,并驗(yàn)證。
試題解析:(1)直線AB方程為:bx-ay-ab=0
依題意解得
∴ 橢圓方程為
(2)假設(shè)存在這樣的k值,由得
∴①
設(shè), ,,則②
而8分
要使以CD為直徑的圓過點(diǎn)E(-1,0),當(dāng)且僅當(dāng)CE⊥DE時(shí),則,即
∴③
將②式代入③整理解得經(jīng)驗(yàn)證,,使①成立
綜上可知,存在,使得以CD為直徑的圓過點(diǎn)E 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan﹣2n(n﹣1),首項(xiàng)=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為Mn,求證: Mn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P在橢圓上,是橢圓的兩個(gè)焦點(diǎn),,且的三條邊長(zhǎng)成等差數(shù)列,則橢圓的離心率e =___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)為: ( )
①是“的充要條件”;
②“”是“”的必要不充分條件;
③“”是“直線與圓相切”的充分不必要條件
④“”是“”既不充分又不必要條件
A. 3 B. 4 C. 1 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解本校高一學(xué)生每周課外閱讀時(shí)間(單位:小時(shí))的情況,按10%的比例對(duì)該校高一600名學(xué)生進(jìn)行抽樣統(tǒng)計(jì),將樣本數(shù)據(jù)分為5組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖:
(Ⅰ)求圖中的x的值;
(Ⅱ)估計(jì)該校高一學(xué)生每周課外閱讀的平均時(shí)間;
(Ⅲ)為了進(jìn)一步提高本校高一學(xué)生對(duì)課外閱讀的興趣,學(xué)校準(zhǔn)備選拔2名學(xué)生參加全市閱讀知識(shí)競(jìng)賽,現(xiàn)決定先在第三組、第四組、第五組中用分層抽樣的放法,共隨機(jī)抽取6名學(xué)生,再從這6名學(xué)生中隨機(jī)抽取2名學(xué)生代表學(xué)校參加全市競(jìng)賽,在此條件下,求第三組學(xué)生被抽取的人數(shù)X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: (a>0,b>0)的離心率為2,右頂點(diǎn)為(1,0).
(1)求雙曲線C的方程;
(2)設(shè)直線y=-x+m與y軸交于點(diǎn)P,與雙曲線C的左、右支分別交于點(diǎn)Q,R,且=2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面, .
()求證: 平面.
()若二面角為直二面角,
(i)求直線與平面所成角的大。
(ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com