3.函數(shù)f(x)=log2(ax2-x-2a)在區(qū)間(-∞,-1)上是單調(diào)減函數(shù),則實數(shù)a的取值范圍是[0,1).

分析 令g(x)=ax2-x-2a,通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性以及二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:令g(x)=ax2-x-2a,
a=0時,g(x)=-x,在(-∞,-1)遞減,
故f(x)在(-∞,-1)遞減,符合題意,
a≠0時,則a>0,g(x)的對稱軸x=$\frac{1}{2a}$>0,
故g(x)在(-∞,-1)遞減,
只需g(-1)=a+1-2a>0即a<1即可,
綜上:0≤a<1,
故答案為:[0,1).

點評 本題考查了函數(shù)的單調(diào)性問題,考查二次函數(shù)的性質(zhì),是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.對于定義域為R的函數(shù)f(x),如果存在非零常數(shù)T,對任意x∈R,都有f(x+T)=Tf(x)成立,則稱函數(shù)f(x)為“T函數(shù)”.
(1)設函數(shù)f(x)=x,判斷f(x)是否為“T函數(shù)”,說明理由;
(2)若函數(shù)g(x)=ax(a>0,且a≠1)的圖象與函數(shù)y=x的圖象有公共點,證明:g(x)為“T函數(shù)”;
(3)若函數(shù)h(x)=cosmx為“T函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知映射f:R→R,x→2x+1,求得f(x)=7時的原象x是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若函數(shù)y=loga(x+1)(a>0,a≠1)的圖象過定點,則x值為(  )
A.-1B.0C.1D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若函數(shù)f(x)=3x+b的圖象不經(jīng)過第二象限,則b的取值范圍為(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log${\;}_{\frac{1}{2}}$(1-x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設M={3,a},N={1,2},M∩N={1},M∪N=( 。
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.假設關于某設備使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
若由資料知y對x呈線性相關關系.
試求:(1)線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的回歸系數(shù)$\stackrel{∧}{a}$,$\stackrel{∧}$;
(2)估計使用年限為10時,維修費用是多少?
(參考公式)$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-\stackrel{∧}\overline{x}}\end{array}\right.$,其中$\overline{x}=\frac{1}{n}\sum_{i=1}^n{x_i}$,$\overline{y}=\frac{1}{n}\sum_{i=1}^n{y_i}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)?(x)=$\frac{1}{x+2}$的定義域是(-∞,-2)∪(-2,+∞).

查看答案和解析>>

同步練習冊答案