【題目】已知以點為圓心的圓C被直線截得的弦長為

1)求圓C的標準方程:

2)求過與圓C相切的直線方程:

3)若Q是直線上的動點,QR,QS分別切圓CR,S兩點.試問:直線RS是否恒過定點?若是,求出恒過點坐標:若不是,說明理由.

【答案】123)直線RS恒過定點

【解析】

1)由弦長可得,進而求解即可;

2)分別討論直線的斜率存在與不存在的情況,再利用圓心到直線距離等于半徑求解即可;

3)由QR,QS分別切圓CR,S兩點,可知,在以為直徑的圓上,,則可得到以為直徑的圓的方程,與圓聯(lián)立可得,求解即可

1)由題,設點到直線的距離為,

,

則弦長,解得,

所以圓的標準方程為:

2)當切線斜率不存在時,直線方程為,圓心到直線距離為2,故此時相切;

當切線斜率存在時,設切線方程為,,

,解得,

則直線方程為,,

綜上,切線方程為

3)直線RS恒過定點,

由題,,,在以為直徑的圓上,

,

則以為直徑的圓的方程為:,

整理可得,

與圓:聯(lián)立可得:,

,

,解得,

故無論取何值時,直線恒過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 某廠一批產(chǎn)品的次品率為 ,則任意抽取其中10件產(chǎn)品一定會發(fā)現(xiàn)一件次品

B. 擲一枚硬幣,連續(xù)出現(xiàn)5次正面向上,第六次出現(xiàn)反面向上的概率與正面向上的概率仍然都為0.5

C. 某醫(yī)院治療一種疾病的治愈率為10%,那么前9個病人都沒有治愈,第10個人就一定能治愈

D. 氣象部門預報明天下雨的概率是90%,說明明天該地區(qū)90%的地方要下雨,其余10%的地方不會下雨

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C1的漸近線是x±2y=0,焦點坐標是F1-,0)、F2,0).

1)求雙曲線C1的方程;

2)若橢圓C2與雙曲線C1有公共的焦點,且它們的離心率之和為,點P在橢圓C2上,且|PF1|=4,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60)[60,70),[70,80),[80,90),[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).

分數(shù)段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是亞太區(qū)域國家與地區(qū)加強多邊經(jīng)濟聯(lián)系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機構為了了解各年齡層對會議的關注程度,隨機選取了100名年齡在內(nèi)的市民進行了調(diào)查,并將結果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市10000名職業(yè)中學高三學生參加了一項綜合技能測試,從中隨機抽取100名學生的測試成績,制作了以下的測試成績(滿分是184分)的頻率分布直方圖.

市教育局規(guī)定每個學生需要繳考試費100元.某企業(yè)根據(jù)這100000名職業(yè)中學高三學生綜合技能測試成績來招聘員工,劃定的招聘錄取分數(shù)線為172分,且補助已經(jīng)被錄取的學生每個人元的交通和餐補費.

(1)已知甲、乙兩名學生的測試成績分別為168分和170分,求技能測試成績的中位數(shù),并對甲、乙的成績作出客觀的評價;

(2)令表示每個學生的交費或獲得交通和餐補費的代數(shù)和,把的函數(shù)來表示,并根據(jù)頻率分布直方圖估計的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量(sin x,cos x),(cos x,cos x)(2,1)

(1)若,求sin xcos x的值;

(2)若0<x≤,求函數(shù)f(x)=·的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)),.

(1)若曲線在它們的交點處有相同的切線,求實數(shù),的值;

(2)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求實數(shù)a的取值范圍;

(3)當,時,求函數(shù)在區(qū)間上的最小值.

[選修4-4:坐標系與參數(shù)方程]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中為了選拔學生參加“全國高中數(shù)學聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.

1)求頻率分布直方圖中a的值;

2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).

查看答案和解析>>

同步練習冊答案