已知數(shù)列是首項為1,公差為2的等差數(shù)列,數(shù)列的前n項和
(I)求數(shù)列的通項公式;
(II)設(shè), 求數(shù)列的前n項和

(Ⅰ).(Ⅱ)由(Ⅰ)

解析試題分析:(Ⅰ)根據(jù).得到
從而通過確定,當(dāng)時,,驗證也適合上式,得到所求通項公式.
(Ⅱ)利用“裂項相消法”求和.難度不大,對基礎(chǔ)知識的考查較為全面.
試題解析:(Ⅰ)由已知,.            2分
所以.從而
當(dāng)時,,
也適合上式,所以.                   6分
(Ⅱ)由(Ⅰ),      8分
所以
.                            12分
考點:等差數(shù)列的通項公式,裂項相消法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,
(1)求證:數(shù)列是等差數(shù)列,并求的通項公式;
(2)設(shè),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列的各項均為正數(shù),
(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè).證明:為等差數(shù)列,并求的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且,數(shù)列滿足,且.
(Ⅰ)求數(shù)列、的通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,,公差,且它的第2項,第5項,第14項分別是等比數(shù)列的第2項,第3項,第4項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)均有成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項等差數(shù)列的前項和為,若,且成等比數(shù)列.
(Ⅰ)求的通項公式;
(Ⅱ)記的前項和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項和記為,.
(1)求數(shù)列的通項公式;
(2)等差數(shù)列的前項和有最大值,且,又、成等比數(shù)列,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項和為,公差,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和公式.

查看答案和解析>>

同步練習(xí)冊答案