【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分數(shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點值(如:組區(qū)間[100,110)的中點值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.
【答案】(Ⅰ)0.3; (Ⅱ)121;(Ⅲ).
【解析】(1)分數(shù)在[120,130)內(nèi)的頻率為
1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3;
(2)估計平均分為
=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121;
(3)依題意,[110,120)分數(shù)段的人數(shù)為60×0.15=9(人),
[120,130)分數(shù)段的人數(shù)為60×0.3=18(人);
∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數(shù)段內(nèi)抽取2人,并分別記為m,n;
在[120,130)分數(shù)段內(nèi)抽取4人,并分別記為a,b,c,d;
設“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內(nèi)”為事件A,
則基本事件有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15種;
則事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9種;
∴P(A)==.
科目:高中數(shù)學 來源: 題型:
【題目】已知當x∈[0,1]時,函數(shù)y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個交點,則正實數(shù)m的取值范圍是( 。
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:
抽取順序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得=xi=9.97,s==≈0.212,≈18.439,(xi﹣)(i﹣8.5)=﹣2.78,
其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相關系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)
過程的進行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地
變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(﹣3s,+3s)之外的零件,就認為這條生產(chǎn)線在這一天
的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
①從這一天抽檢的結果看,是否需對當天的生產(chǎn)過程進行檢查?
、谠(﹣3s,+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的
均值與標準差.(精確到0.01)
附:樣本(xi,yi)(i=1,2,…,n)的相關系數(shù)r=,≈0.09.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設常數(shù),函數(shù).
(1) 若,求的單調(diào)遞減區(qū)間;
(2) 若為奇函數(shù),且關于的不等式對所有的恒成立,求實數(shù)的取值范圍;
(3) 當時,若方程有三個不相等的實數(shù)根、、,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
分類 | 積極參加 班級工作 | 不太主動參 加班級工作 | 總計 |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
總計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+)
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的最大項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,x∈R.
(1)證明對a、b∈R,且a≠b,總有:|f(a)﹣f(b)|<|a﹣b|;
(2)設a、b、c∈R,且 ,證明:a+b+c≥ab+bc+ca.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com