【題目】已知拋物線 ,M為直線上任意一點(diǎn),過點(diǎn)M作拋物線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
(1)當(dāng)M的坐標(biāo)為(0,-1)時,求過M,A,B三點(diǎn)的圓的方程;
(2)證明:以為直徑的圓恒過點(diǎn)M.
【答案】(1)(2)見證明
【解析】
(1)設(shè)出過點(diǎn)的切線方程,與拋物線方程聯(lián)立,得到一個元二次方程,它的判別式為零,可以求出切線方程的斜率,這樣可以求出A,B兩點(diǎn)的坐標(biāo),設(shè)出圓心的坐標(biāo)為,由,可以求出,最后求出圓的方程;
(2)設(shè),設(shè)切點(diǎn)分別為,,把拋物線方程化,求導(dǎo),這樣可以求出切線的斜率,求出切線 的方程,切線的方程,又因為切線過點(diǎn),切線也過點(diǎn),這樣可以發(fā)現(xiàn),是一個關(guān)于的一元二次方程的兩個根,計算出,,計算,根據(jù)根與系數(shù)關(guān)系,化簡,最后計算出=0,這樣就證明出以為直徑的圓恒過點(diǎn)M.
解:(1)解:當(dāng)的坐標(biāo)為時,設(shè)過點(diǎn)的切線方程為,
由消得. (1)
令,解得.
代入方程(1),解得A(2,1),B(-2,1).
設(shè)圓心的坐標(biāo)為,由,得,解得.
故過三點(diǎn)的圓的方程為.
(2)證明:設(shè),由已知得,,設(shè)切點(diǎn)分別為,,所以,,
切線 的方程為即,
切線的方程為即.
又因為切線過點(diǎn),所以得. ①
又因為切線也過點(diǎn),所以得. ②
所以,是方程的兩實根,
由韋達(dá)定理得.
因為,,
所以
.
將代入,得.
所以以為直徑的圓恒過點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x+y-6=0,過直線上一點(diǎn)P作圓x2+y2=4的切線,切點(diǎn)分別為A,B,則四邊形PAOB面積的最小值為______,此時四邊形PAOB外接圓的方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為的坐標(biāo)滿足圓方程,且圓心滿足.
(1)求橢圓的方程;
(2)過點(diǎn)的直線交橢圓于、兩點(diǎn),過與垂直的直線交圓于、兩點(diǎn),為線段中點(diǎn),若的面積 ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解校園噪音情況,學(xué)校環(huán)保協(xié)會對校園噪音值(單位:分貝)進(jìn)行了天的監(jiān)測,得到如下統(tǒng)計表:
噪音值(單位:分貝) | ||||||
頻數(shù) |
(1)根據(jù)該統(tǒng)計表,求這天校園噪音值的樣本平均數(shù)(同一組的數(shù)據(jù)用該組組間的中點(diǎn)值作代表).
(2)根據(jù)國家聲環(huán)境質(zhì)量標(biāo)準(zhǔn):“環(huán)境噪音值超過分貝,視為重度噪音污染;環(huán)境噪音值不超過分貝,視為度噪音污染.”如果把由上述統(tǒng)計表算得的頻率視作概率,回答下列問題:
(i)求周一到周五的五天中恰有兩天校園出現(xiàn)重度噪音污染而其余三天都是輕度噪音污染的概率.
(ii)學(xué)校要舉行為期天的“漢字聽寫大賽”校園選拔賽,把這天校園出現(xiàn)的重度噪音污染天數(shù)記為,求的分布列和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓長軸是短軸的倍,且右焦點(diǎn)為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線交橢圓于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,求直線的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表,經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
價格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)上表給出的數(shù)據(jù),求出y與x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價格元/kg時,日需求量y的預(yù)測值為多少?
(參考公式:線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 若,則的最小值為__________; 若有最小值,則實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com