若函數(shù)f(x)=-x2+2ax與g(x)=(a+1)1-x在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍是( 。
A、(-1,0)
B、(0,1]
C、(0,1)
D、(-1,0)∪(0,1]
考點:函數(shù)單調性的性質,函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:由題意可得a≤1,且a+1>1,由此求得a的范圍.
解答: 解:函數(shù)f(x)=-x2+2ax的圖象的對稱軸方程為x=a,它與g(x)=(a+1)1-x在區(qū)間[1,2]上都是減函數(shù),
故有a≤1,且a+1>1,求得 0<a≤1,
故選:B.
點評:本題主要考查二次函數(shù)、指數(shù)函數(shù)的單調性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知任意非零實數(shù)x,y滿足3x2+4xy≤λ(x2+y2)恒成立,則實數(shù)λ的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖表示求算式“2×4×8×16×32”的值,則判斷框內可以填入( 。
A、k<10B、k<20
C、k<30D、k<40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,且a2=3,a6=5,S7=( 。
A、42B、28C、24D、34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)
15
sinx+
5
cosx;
(2)
3
2
cosx-
3
2
sinx;
(3)
3
sin
x
2
+cos
x
2
;
(4)
2
4
sin(
π
4
-x)+
6
4
cos(
π
4
-x);
(5)sin347°cos148°+sin77°cos58°;
(6)sin164°sin224°+sin254°sin314°;
(7)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ);
(8)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(9)
tan
4
+tan
12
1-tan
12
;
(10)
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算|
i-1
i+1
|=( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過點(3,-
2
),離心率e=
5
2
的雙曲線的標準方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷函數(shù)f(x)=-x2+xlnx的單調性.

查看答案和解析>>

同步練習冊答案