已知圓C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為
x=2s-7
y=s
(s為參數(shù)),則圓心C到直線l的距離是
8
5
5
8
5
5
分析:將圓C化成直角坐標方程,算出圓心C(1,0).再將直線化成普通方程,利用點到直線的距離公式加以計算,即可得到所求圓心C到直線l的距離.
解答:解:將圓C方程ρ=2cosθ化成直角坐標方程,得(x-1)2+y2=1
∴圓心C(1,0),半徑r=1
將直線l的參數(shù)方程
x=2s-7
y=s
(s為參數(shù)),
化成普通方程得x-2y+7=0
因此,圓心C到直線l的距離d=
|1-2×0+7|
5
=
8
5
5

故答案為:
8
5
5
點評:本題給出直線的參數(shù)方程與圓的極坐標方程,求圓心到直線的距離.著重考查了極坐標、參數(shù)方程與直角坐標方程的互化,直線與圓的方程和點到直線的距離公式等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]已知圓C的極坐標方程是ρ=4cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是
x=
2
2
t+m
y=
2
2
t
(t是參數(shù)).若直線l與圓C相切,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的極坐標方程為ρ=2cosθ,則圓C上點到直線l:ρcosθ-2ρsinθ+4=0的最短距離為
5
-1
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)(坐標系與參數(shù)方程選做題)已知圓C的極坐標方程ρ=2cosθ,則圓C上點到直線l:ρcosθ-2ρsinθ+7=0的最短距離為
8
5
5
-1
8
5
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石家莊二模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,以原點0為極點,x軸的正半軸為極軸,建立極坐標系,已知圓C的極坐標方程為ρ=2acos(θ+
π
4
)(a>0).
(Ⅰ)當a=2
2
時,設(shè)OA為圓C的直徑,求點A的直角坐標;
(Ⅱ)直線l的參數(shù)方程是
x=2t
y=4t
(t為參數(shù)),直線l被圓C截得的弦長為d,若d≥
2
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)已知圓C的極坐標方程為ρ=asinθ,則“a=2”是“圓C與極軸所在直線相切”的 ( 。

查看答案和解析>>

同步練習(xí)冊答案