7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+4a,x>3}\\{2x+{a}^{2},x≤3}\end{array}\right.$,其中a>0,若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是[7,+∞).

分析 根據(jù)指數(shù)函數(shù)性質(zhì)可知y=3x+4a,(x>3)是增函數(shù),其值域y>27+4a,y=2x+a2(x≤3)也是增函數(shù),其值域y≤9+a2.要使f(x)的值域?yàn)镽,只需9+a2≥27+4a即可,從而可得實(shí)數(shù)a的取值范圍.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+4a,x>3}\\{2x+{a}^{2},x≤3}\end{array}\right.$,其中a>0,
令y1=3x+4a,(x>3)是增函數(shù),其值域y1>27+4a,
y2=2x+a2(x≤3)也是增函數(shù),其值域y2≤9+a2
要使f(x)的值域?yàn)镽,只需9+a2≥27+4a
解得:a≥7或a≤-3.
∵a>0,
∴實(shí)數(shù)a的取值范圍是[7,+∞)
故答案為:[7,+∞).

點(diǎn)評(píng) 本題考查了分段函數(shù)值域的問題,抓住分段函數(shù)中的各段函數(shù)的單調(diào)性,求出值域是關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)據(jù)0.7,1,0.8,0.9,1.1的方差是0.02.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知AD是△ABC內(nèi)角∠BAC的角平分線.
(1)用正弦定理證明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=-1的距離之和等于4的動(dòng)點(diǎn)的軌跡為曲線C,關(guān)于曲線C的幾何性質(zhì),給出下列四個(gè)結(jié)論:
①曲線C的方程為x2=4y;                                ②曲線C關(guān)于y軸對(duì)稱  
③若點(diǎn)P(x,y)在曲線C上,則|y|≤2;          ④若點(diǎn)P在曲線C上,則1≤|PF|≤4
其中,所有正確結(jié)論的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=3cos(2x+$\frac{π}{6}$)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,已知AB=2,AC=6,∠BAC=60°,點(diǎn)D,E分別在邊AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=5$\overrightarrow{AE}$,
(1)若$\overrightarrow{BF}$=-$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{AC}$,求證:點(diǎn)F為DE的中點(diǎn);
(2)在(1)的條件下,求$\overrightarrow{BA}$•$\overrightarrow{EF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從1,2,3,4,5,6這6個(gè)數(shù)字中任取三個(gè)數(shù)字,其中:①至少有一個(gè)偶數(shù)與都是偶數(shù);②至少有一個(gè)偶數(shù)與都是奇數(shù);③至少有一個(gè)偶數(shù)與至少有一個(gè)奇數(shù);④恰有一個(gè)偶數(shù)與恰有兩個(gè)偶數(shù).上述事件中,是互斥但不對(duì)立的事件是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,則二面角A-PB-E的大小為(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對(duì)于任意向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$,下列命題中正確的有幾個(gè)( 。
(1)|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|(2)|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|((3)($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)(4)$\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$|2
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案