14.實數(shù)x滿足|x2-x-2|+|${\frac{1}{x}}$|=|x2-x-2+$\frac{1}{x}}$|,則x的解集為{x|-1≤x<0或x≥2}.

分析 由已知條件得到x2-x-2與$\frac{1}{x}$同號或均為0,列出關(guān)于x的不等式組,求出不等式組的解集,同時考慮分母不為0得到x不等于0,即可得到x的范圍.

解答 解:由已知條件得到x2-x-2與$\frac{1}{x}$同號或均為0,
∴$\left\{\begin{array}{l}{x≠0}\\{x({x}^{2}-x-2)≥0}\end{array}\right.$
∴-1≤x<0或x≥2.
∴解集為{x|-1≤x<0或x≥2}.
故答案為:{x|-1≤x<0或x≥2}.

點評 此題考查學(xué)生掌握絕對值的意義,以及一元二次不等式的解法,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=x+$\frac{2}{x}$(x>0),則函數(shù)f(x)的單調(diào)遞增區(qū)間為$(\sqrt{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\sqrt{5-x}$的定義域為M,函數(shù)g(x)=$\frac{1}{|x|-1}$的定義域為N,則M∩N=(-∞,-1)∪(-1,1)∪(1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=2x-3-$\sqrt{13-4x}$的值域是(-∞,$\frac{7}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=log3(2x+1)的值域是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow a$=(2sin2x,1),$\overrightarrow b$=(1,-1),x∈R.
(1)當(dāng)x=$\frac{π}{6}$時,求下列$\overrightarrow a$+$\overrightarrow b$的坐標(biāo);
(2)若函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$+3,問:x為何值時,f(x)取得最大值?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sin($\frac{π}{2}$+φ)=$\frac{1}{2}$且0<φ<π,則tanφ=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$-\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(0,1)的直線l被圓(x-1)2+y2=4所截得的弦長最短時,直線l的斜率為( 。
A.1B.-1C.$\sqrt{2}$D.$-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點為F(c,0),離心率為$\frac{{\sqrt{3}}}{3}$,點M在橢圓上且位于第一象限,直線FM被圓${x^2}+{y^2}=\frac{b^2}{4}$截得的線段的長為c,則直線FM的斜率為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案