已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C的左準(zhǔn)線與軸的交點(diǎn),過(guò)點(diǎn)P的直線與橢圓C相交于M,N兩點(diǎn),當(dāng)線段MN的中點(diǎn)落在正方形Q內(nèi)(包括邊界)時(shí),求直線的斜率的取值范圍。
(Ⅰ)依題意,設(shè)橢圓C的方程為焦距為,由題設(shè)條件知, 所以故橢圓C的方程為
(Ⅱ)橢圓C的左準(zhǔn)線方程為所以點(diǎn)P的坐標(biāo),顯然直線的斜率存在,所以直線的方程為。如圖,設(shè)點(diǎn)M,N的坐標(biāo)分別為線段MN的中點(diǎn)為G,
由得. ……①
由解得. ……②
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052603482758963664/SYS201205260350266834114793_DA.files/image018.png">是方程①的兩根,所以,于是
=, .
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052603482758963664/SYS201205260350266834114793_DA.files/image023.png">,所以點(diǎn)G不可能在軸的右邊,
又直線,方程分別為
所以點(diǎn)在正方形內(nèi)(包括邊界)的充要條件為
即 亦即
解得,此時(shí)②也成立.
故直線斜率的取值范圍是
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市2012屆高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原
點(diǎn),左焦
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(3)過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個(gè)橢圓,它的中心在原
。
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(3)過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com