【題目】40名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù) (保留小數(shù)點(diǎn)后兩位數(shù)字)和眾數(shù);
(3)從成績(jī)?cè)?/span>的學(xué)生中任選3人,求這3人的成績(jī)都在中的概率.
【答案】(1);(2)77.14,75;(3)
【解析】
(1)根據(jù)頻率之和為列方程,解方程求得的值.
(2)根據(jù)率分布直方圖求中位數(shù)和眾數(shù)的方法,求得中位數(shù)和眾數(shù).
(3)利用古典概型概率計(jì)算方法,計(jì)算出所求的概率.
(1)依題意,解得.
(2)最高的小長(zhǎng)方形的中點(diǎn)為,故眾數(shù)的估計(jì)值為.由于,,設(shè)中位數(shù)為,則,解得,故中位數(shù)為.
(3)的人數(shù)為人,與人數(shù)的比例為,即中有人,中有人,從中任選人,這3人的成績(jī)都在中的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,AB∥CD,AB,E為PC中點(diǎn).
(Ⅰ)證明:BE∥平面PAD;
(Ⅱ)若AB⊥平面PBC,△PBC是邊長(zhǎng)為2的正三角形,求點(diǎn)E到平面PAD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以橢圓:的中心為圓心,為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓的左頂點(diǎn)為,左焦點(diǎn)為,上頂點(diǎn)為,且滿足,.
(1)求橢圓及其“準(zhǔn)圓”的方程;
(2)若橢圓的“準(zhǔn)圓”的一條弦與橢圓交于、兩點(diǎn),試證明:當(dāng)時(shí),弦的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市高三教學(xué)質(zhì)量檢測(cè)中,全市共有5000名學(xué)生參加了本次考試,其中示范性高中參加考試學(xué)生人數(shù)為2000人,非示范性高中參加考試學(xué)生人數(shù)為3000人.現(xiàn)從所有參加考試的學(xué)生中隨機(jī)抽取100人,作檢測(cè)成績(jī)數(shù)據(jù)分析.
(1)設(shè)計(jì)合理的抽樣方案(說(shuō)明抽樣方法和樣本構(gòu)成即可);
(2)依據(jù)100人的數(shù)學(xué)成績(jī)繪制了如圖所示的頻率分布直方圖,據(jù)此估計(jì)本次檢測(cè)全市學(xué)生數(shù)學(xué)成績(jī)的平均分;
(3)如果規(guī)定成績(jī)不低于130分為特別優(yōu)秀,現(xiàn)已知語(yǔ)文特別優(yōu)秀占樣本人數(shù)的,語(yǔ)文、數(shù)學(xué)兩科都特別優(yōu)秀的共有3人,依據(jù)以上樣本數(shù)據(jù),完成列聯(lián)表,并分析是否有的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.
語(yǔ)文特別優(yōu)秀 | 語(yǔ)文不特別優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)特別優(yōu)秀 | |||
數(shù)學(xué)不特別優(yōu)秀 | |||
合計(jì) |
參考公式:
參考數(shù)據(jù):
0.50 | 0.40 | … | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | … | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年春節(jié)期間,我國(guó)高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費(fèi)政策”.某路橋公司為掌握春節(jié)期間車(chē)輛出行的高峰情況,在某高速收費(fèi)點(diǎn)處記錄了大年初三上午9:20~10:40這一時(shí)間段內(nèi)通過(guò)的車(chē)輛數(shù),統(tǒng)計(jì)發(fā)現(xiàn)這一時(shí)間段內(nèi)共有600輛車(chē)通過(guò)該收費(fèi)點(diǎn),它們通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的頻率分布直方圖如圖所示,其中時(shí)間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.比方:10點(diǎn)04分,記作時(shí)刻64.
(1)估計(jì)這600輛車(chē)在9:20~10:40時(shí)間段內(nèi)通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)為了對(duì)數(shù)據(jù)進(jìn)行分析,現(xiàn)采用分層抽樣的方法從這600輛車(chē)中抽取10輛,再?gòu)倪@10輛車(chē)中隨機(jī)抽取4輛,記為9:20~10:00之間通過(guò)的車(chē)輛數(shù),求的分布列與數(shù)學(xué)期望;
(3)由大數(shù)據(jù)分析可知,車(chē)輛在春節(jié)期間每天通過(guò)該收費(fèi)點(diǎn)的時(shí)刻服從正態(tài)分布,其中可用這600輛車(chē)在9:20~10:40之間通過(guò)該收費(fèi)點(diǎn)的時(shí)刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表),已知大年初五全天共有1000輛車(chē)通過(guò)該收費(fèi)點(diǎn),估計(jì)在9:46~10:40之間通過(guò)的車(chē)輛數(shù)(結(jié)果保留到整數(shù)).
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:在左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),若是面積為的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知,是橢圓上的兩點(diǎn),且,求使的面積最大時(shí)直線的方程(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>.
(1)當(dāng)時(shí),若函數(shù)在區(qū)間上有最大值,求的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com