已知a>0,函數(shù)f(x)=x3-ax在[1,+∞)上單調(diào)遞增,則a的最大值為    
【答案】分析:先利用導(dǎo)函數(shù)求出原函數(shù)的單調(diào)增區(qū)間,再讓[1,+∞)是所求區(qū)間的子集可得結(jié)論.
解答:解:∵f(x)=x3-ax,∴f′(x)=3x2-a=3(x-)(x+
∴f(x)=x3-ax在(-∞,-),(,+∞)上單調(diào)遞增,
∵函數(shù)f(x)=x3-ax在[1,+∞)上單調(diào)遞增,
≤1⇒a≤3
∴a的最大值為 3
故答案為:3.
點評:本題考查了用導(dǎo)函數(shù)求原函數(shù)的單調(diào)區(qū)間.在用導(dǎo)函數(shù)求原函數(shù)的單調(diào)區(qū)間時,導(dǎo)函數(shù)大于0對應(yīng)的區(qū)間是原函數(shù)的單調(diào)增區(qū)間;導(dǎo)函數(shù)小于0對應(yīng)的區(qū)間是原函數(shù)的單調(diào)減區(qū)間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(1)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
(Ⅰ)當a=
1
8

①求f(x)的單調(diào)區(qū)間;
②證明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
|x-2a|
x+2a
在區(qū)間[1,4]上的最大值等于
1
2
,則a的值為
 

查看答案和解析>>

同步練習(xí)冊答案