(13分)已知拋物線與直線交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).

(I)當(dāng)k=1時(shí),求線段AB的長(zhǎng);

(II)當(dāng)kR內(nèi)變化時(shí),求線段AB中點(diǎn)C的軌跡方程;

(III)設(shè)是該拋物線的準(zhǔn)線.對(duì)于任意實(shí)數(shù)k上是否存在點(diǎn)D,使得?如果存在,求出點(diǎn)D的坐標(biāo);如不存在,說明理由. 

 

【答案】

解:設(shè)點(diǎn)、分別為、,由題意得

,

,                        1分

,                 2分

,

                           3分

(Ⅰ)當(dāng)時(shí),,,

                   4分

               6分

(Ⅱ)設(shè)線段中點(diǎn)的坐標(biāo)為,則當(dāng)變化時(shí),

                          7分

消去,得

即點(diǎn)的軌跡方程為               9分

(Ⅲ)拋物線的準(zhǔn)線的方程為         10分

假設(shè)在上存在一點(diǎn),使,則

,         12分

  、

,,,代入①式,整理得,即

∴對(duì)于任意實(shí)數(shù),在上存在點(diǎn),使得          13分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線與直線交于A,B兩點(diǎn)(易于原點(diǎn)O),且以AB為直徑的圓恰好過原點(diǎn).

(1)求證:直線過定點(diǎn).

(2)求:面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)

已知拋物線與直線交于兩點(diǎn).

(Ⅰ)求弦的長(zhǎng)度;

(Ⅱ)若點(diǎn)在拋物線上,且的面積為,求點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

如圖,已知拋物線與圓交于M、N兩點(diǎn),

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)直線與圓相切.

(ⅰ)若直線與拋物線也相切,求直線的方程;

(ⅱ)若直線與拋物線交與不同的A、B兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0119 月考題 題型:填空題

已知拋物線與直線交于A,B兩點(diǎn),如果在該拋物線上存在點(diǎn)C,使得(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)=(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案