【題目】已知函數(shù)fx

1)畫出函數(shù)fx)的圖象,根據(jù)圖象直接寫出fx)的值域;

2)根據(jù)圖象直接寫出滿足fx≥2的所有x的集合;

3)若fx)的遞減區(qū)間為(﹣,a),遞增區(qū)間為(b+∞),直接寫出a的最大值,b的最小值.

【答案】1)圖見解析,值域為:[0,+∞);(2)(﹣,﹣1][1+∞);(3a的最大值為0b的最小值為0

【解析】

1)根據(jù)分段函數(shù)解析式,畫出函數(shù)圖象,并根據(jù)圖象求得函數(shù)的值域.

2)根據(jù)圖象,求得不等式的解集.

3)根據(jù)圖象,由圖求得函數(shù)的單調(diào)區(qū)間,進(jìn)而求得的最大值和的最小值.

1)因為函數(shù)fx

所以:函數(shù)fx)的圖象如圖:;由圖可知其值域為:[0,+∞);

2)滿足fx≥2的所有x的集合是:(﹣,﹣1][1,+∞);

3)因為函數(shù)的遞減區(qū)間為:(﹣,0];遞增區(qū)間為:[0,+∞);

fx)的遞減區(qū)間為(﹣,a),遞增區(qū)間為(b,+∞

a的最大值為0b的最小值為0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),定直線 ,動圓過點(diǎn),且與直線相切.

(Ⅰ)求動圓的圓心軌跡的方程;

(Ⅱ)過點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點(diǎn).

(1)將曲線的參數(shù)方程化為普通方程,并求時, 的長度;

(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時, 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的單調(diào)區(qū)間;

(2)恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個相同的小球放到三個編號為的盒子中,且每個盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的單調(diào)函數(shù)f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區(qū)間是 ( 。

A. (2,3) B. C. D. (1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y24y+10,點(diǎn)M(﹣1,﹣1),從圓C外一點(diǎn)P向該圓引一條切線,記切點(diǎn)為T

1)若過點(diǎn)M的直線l與圓交于A,B兩點(diǎn)且|AB|2,求直線l的方程;

2)若滿足|PT||PM|,求使|PT|取得最小值時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.

1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;

2)用X表示比賽決出勝負(fù)時的總局?jǐn)?shù),求隨機(jī)變量X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,為線段的中點(diǎn),如圖1,沿折起至,使,如圖2所示.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案