16.能夠把圓O:x2+y2=9的周長和面積同時分為相等的兩部分的函數(shù)f(x)稱為“親和函數(shù)”,則下列函數(shù):$f(x)={x^3}+x,f(x)=ln\frac{5+x}{5-x},f(x)=tan\frac{x}{5},f(x)={e^x}+{e^{-x}}$,其中是圓O:x2+y2=9的“親和函數(shù)”的個數(shù)為( 。
A.1B.2C.3D.4

分析 由“親和函數(shù)”的定義知,若函數(shù)為“親和函數(shù)”,則該函數(shù)必為過原點(diǎn)的奇函數(shù),由此判斷即可得出結(jié)論.

解答 解:由“親和函數(shù)”的定義知,若函數(shù)為“親和函數(shù)”,則該函數(shù)為過原點(diǎn)的奇函數(shù);
①中,f(0)=0,且f(x)為奇函數(shù),故f(x)=x3+x為“親和函數(shù)”;
②中,f(0)=ln1=0,且f(-x)=f(x),所以f(x)為奇函數(shù),
所以f(x)=ln$\frac{5+x}{5-x}$為“親和函數(shù)”;
③中,f(0)=tan0=0,且f(-x)=f(x),f(x)為奇函數(shù),
故f(x)=tan$\frac{x}{5}$為“親和函數(shù)”.
④中,f(0)=e0+e-0=2,所以f(x)=ex+e-x的圖象不過原點(diǎn),
故f(x))=ex+e-x不為“親和函數(shù)”;
綜上,以上為“親和函數(shù)”的個數(shù)是3個.
故選:C.

點(diǎn)評 本題考查了新定義函數(shù)的應(yīng)用問題,解題時要注意函數(shù)的性質(zhì)與合理運(yùn)用,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系中,已知圓C的方程為(x-3)2+(y+4)2=4,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,$A(2,π),B(2,\frac{π}{2})$.
(1)寫出圓C的極坐標(biāo)方程與參數(shù)方程;
(2)若F在圓C上運(yùn)動,求△ABF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.定義:在平面內(nèi),點(diǎn)P到曲線Γ上的點(diǎn)的距離的最小值稱為點(diǎn)P到曲線Γ的距離.在平面直角坐標(biāo)系xOy中,已知圓M:${({x-\sqrt{2}})^2}+{y^2}=12$及點(diǎn)$A({-\sqrt{2},0})$,動點(diǎn)P到圓M的距離與到A點(diǎn)的距離相等,記P點(diǎn)的軌跡為曲線W.
(Ⅰ)求曲線W的方程;
(Ⅱ)過原點(diǎn)的直線l(l不與坐標(biāo)軸重合)與曲線W交于不同的兩點(diǎn)C,D,點(diǎn)E在曲線W上,且CE⊥CD,直線DE與x軸交于點(diǎn)F,設(shè)直線DE,CF的斜率分別為k1,k2,求$\frac{k_1}{k_2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( 。
A.f(x)=x2B.$f(x)=\frac{1}{x}$C.f(x)=exD.?(x)=x7-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|x2-5x+4>0},集合B={x|y=lg(x-2)},則(∁RA)∩B=( 。
A.(2,4]B.[2,4]C.[4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明:BD∥面PEC;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=lnx+x2-2ax+1.(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x0∈(0,1],使得對任意的a∈(-2,0],不等式$2m{e^a}+f({x_0})>{a^2}+2a+4$(其中e為自然對數(shù)的底數(shù))都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出如下列聯(lián)表
患心臟病患其它病合  計
高血壓201030
不高血壓305080
合  計5060110
由以上數(shù)據(jù)判斷高血壓與患心臟病之間在多大程度上有關(guān)系?( 。
(參考數(shù)據(jù):P(K2≥6.635)=0.010,P(K2≥7.879)=0.005)
A.0.5%B.1%C.99.5%D.99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lg[(m2-3m+2)x2+2(m-1)x+5],如果函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案