【題目】某公司為感謝全體員工的辛勤勞動(dòng),決定在年終答謝會(huì)上,通過(guò)摸球方式對(duì)全公司1000位員工進(jìn)行現(xiàn)金抽獎(jiǎng)。規(guī)定:每位員工從裝有4個(gè)相同質(zhì)地球的袋子中一次性隨機(jī)摸出2個(gè)球,這4個(gè)球上分別標(biāo)有數(shù)字、、、,摸出來(lái)的兩個(gè)球上的數(shù)字之和為該員工所獲的獎(jiǎng)勵(lì)額(單位:元)。公司擬定了以下三個(gè)數(shù)字方案:

方案

100

100

100

500

100

100

500

500

200

200

400

400

(Ⅰ)如果采取方案一,求的概率;

(Ⅱ)分別計(jì)算方案二、方案三的平均數(shù)和方差,如果要求員工所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,方案二和方案三選擇哪個(gè)更好?

(Ⅲ)在投票選擇方案二還是方案三時(shí),公司按性別分層抽取100名員工進(jìn)行統(tǒng)計(jì),得到如下不完整的列聯(lián)表。請(qǐng)將該表補(bǔ)充完整,并判斷能否有90%的把握認(rèn)為“選擇方案二或方案三與性別有關(guān)”?

方案二

方案三

合計(jì)

男性

12

女性

40

合計(jì)

82

100

附:

0.15

0.10

0.05

2.072

2.706

3.841

【答案】(1)(2)選擇方案三較好(3)不能

【解析】試題分析:(Ⅰ)利用枚舉法,寫(xiě)出所有的基本事件,找出其中方案一包含的基本事件上,再利用古典概型可求得概率;(Ⅱ)由已知數(shù)據(jù),結(jié)合平均數(shù)與方差的的計(jì)算公式可求得結(jié)果;(Ⅲ)利用所給條件,填好列聯(lián)表,求出常數(shù),結(jié)合獨(dú)立性檢驗(yàn)及所給數(shù)據(jù)得出判斷.

試題解析:(Ⅰ)從a、b、c、d中取兩個(gè),共有ab、ac、ad、bc、bd、cd 這6個(gè)基本事件

采取方案一,設(shè)為事件A,它包含ab、ac、bc3個(gè)基本事件

由于每個(gè)基本事件都是等可能的,所以

(Ⅱ)依題意,求數(shù)據(jù)ab、ac、ad、bc、bd、cd的平均數(shù)和方差。

,

,

,

,

,,方案三的方差較小,相對(duì)均衡,選擇方案三較好。

合計(jì)

男性

12

48

60

女性

6

34

40

合計(jì)

18

82

100

(Ⅲ)

直接計(jì)算得,,

所以不能以的把握認(rèn)為選擇方案二或三與性別有關(guān)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象的一部分如圖所示,函數(shù)g(x)=f(x+ ),則下列結(jié)論正確的是(

A.函數(shù)g(x)的奇函數(shù)
B.函數(shù)f(x)與g(x)的圖象均關(guān)于直線(xiàn)x=﹣ π對(duì)稱(chēng)
C.函數(shù)f(x)與g(x)的圖象均關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng)
D.函數(shù)f(x)與g(x)在區(qū)間(﹣ ,0)上均單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC A1B1C1中,D,E分別為ABBC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1DA1F,A1C1A1B1

(1) 求證:直線(xiàn)DE∥平面A1C1F;

(2) 求證:平面B1DE⊥平面A1C1F

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是偶函數(shù),且f(x+ )=f( ﹣x),當(dāng)﹣ ≤x≤0時(shí),f(x)=( x﹣1,記an=f( ),n∈N+ , 則a2046的值為( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的點(diǎn).

(1)求證: 平面平面;

(2)若的中點(diǎn),且二面角的余弦值為,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線(xiàn)處的切線(xiàn)與直線(xiàn)垂直,求的值;

(Ⅱ)當(dāng)時(shí),求證:存在實(shí)數(shù)使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷(xiāo).經(jīng)過(guò)市場(chǎng)調(diào)查,每年投入廣告費(fèi)t百萬(wàn)元,可增加銷(xiāo)售額約(2t+ )百萬(wàn)元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬(wàn)元,求每年投放廣告費(fèi)至少多少百萬(wàn)元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬(wàn)元分別用于當(dāng)年廣告費(fèi)和新產(chǎn)品開(kāi)發(fā),經(jīng)預(yù)測(cè),每投入新產(chǎn)品開(kāi)發(fā)費(fèi)x百萬(wàn)元,可增加銷(xiāo)售額約( +3x+ )百萬(wàn)元,問(wèn)如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷(xiāo)售額﹣投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)若直線(xiàn) 與曲線(xiàn)分別交于兩點(diǎn).設(shè)曲線(xiàn)

在點(diǎn)處的切線(xiàn)為, 在點(diǎn)處的切線(xiàn)為.

(ⅰ)當(dāng)時(shí),若 ,求的值;

(ⅱ)若,求的最大值;

(Ⅱ)設(shè)函數(shù)在其定義域內(nèi)恰有兩個(gè)不同的極值點(diǎn) ,且

,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為 人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺(jué)性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:

(1)現(xiàn)從乙班數(shù)學(xué)成績(jī)不低于 分的同學(xué)中隨機(jī)抽取兩名同學(xué),求至少有一名成績(jī)?yōu)?/span> 分的同學(xué)被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于 分的優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

附:參考公式及數(shù)據(jù)

查看答案和解析>>

同步練習(xí)冊(cè)答案