【題目】公差不為零的等差數(shù)列{an}中,a3=7,且a2a4a9成等比數(shù)列.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn ,求數(shù)列{bn}的前n項和Sn

【答案】(1)an3n2;(2).

【解析】試題分析:(1)設(shè)數(shù)列的公差為d,根據(jù)a3=7,又a2,a4,a9成等比數(shù)列,可得(7+d)2=(7-d)(7+6d),從而可得d=3,進而可求數(shù)列{an}的通項公式;
(2)先確定數(shù)列{bn}是等比數(shù)列,進而可求數(shù)列{bn}的前n項和Sn

試題解析:

(1)由數(shù)列{an}為公差不為零的等差數(shù)列,設(shè)其公差為dd0.

因為a2,a4,a9成等比數(shù)列,

所以aa2·a9,(a13d)2(a1d)(a18d),

整理得d23a1d.

因為d0所以d3a1.

因為a37,所以a12d7.

由①②解得a11d3,

所以an1(n1)×33n2.

故數(shù)列{an}的通項公式是an3n2.

(2)(1)bn23n2,

因為8

所以{bn}是等比數(shù)列,且公比為8,首項b12,

所以Sn.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一圓經(jīng)過點,且它的圓心在直線.

I求此圓的方程;

II若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與雙曲線,有公共焦點,是曲線,在在第一象限的交點,

1求雙曲線的方程;

2為圓心的圓與雙曲線的一條漸進線相切,.已知點,過點作互相垂直分別與圓、相交的直線設(shè)被圓解得的弦長為,被圓截得的弦長為.試探索是否為定值?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如下,已知分數(shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分數(shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準備從分數(shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的數(shù)學(xué)成績達到130分,請你估計他的物理成績大約是多少?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調(diào)查,統(tǒng)計出售價元和銷售量杯之間的一組數(shù)據(jù)如下表所示:

價格

5

5.5

6.5

7

銷售量

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量對奶茶的價格具有線性相關(guān)關(guān)系.

(Ⅰ)求銷售量對奶茶的價格的回歸直線方程;

(Ⅱ)欲使銷售量為杯,則價格應(yīng)定為多少?

附:線性回歸方程為,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,三個內(nèi)角A,B,C所對的邊分別為ab,c,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大;

(2)若ab,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,M,N分別為AB,AC的中點,沿MN將△AMN折起,使點A到A′的位置.若平面A′MN與平面MNCB垂直,則四棱錐A′MNCB的體積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點()為圓心的圓與軸交

于點O, A,與y軸交于點O, B,其中O為原點.

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點M, N,若OM = ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)已知橢圓C的中心在坐標原點,離心率,且其中一個焦點與拋物線的焦點重合.(Ⅰ)求橢圓C的方程;(Ⅱ)過點的動直線l交橢圓CA、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案