頂點在原點,焦點在y軸上的拋物線上的一點P(m,-2)到焦點的距離為4,則m的值為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意可設(shè)拋物線的方程為:x2=-2py,利用拋物線的定義求得p的值即可.
解答: 解:∵拋物線的頂點在原點,焦點在y軸上,拋物線上一點(m,-2),
∴設(shè)拋物線的方程為:x2=-2py(p>0),
∴其準(zhǔn)線方程為:y=
p
2
,
∵拋物線上一點P(m,-2)到焦點F的距離等于4,
∴由拋物線的定義得:|PF|=
p
2
+2=4,
∴p=4,
∴所求拋物線的方程為x2=-8y,
y=-2時,有x2=16,則x=±4,
故答案為:±4.
點評:本題考查拋物線的簡單性質(zhì),考查待定系數(shù)法,突出考查拋物線的定義的理解與應(yīng)用,求得p的值是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|sin(2x+
π
3
)|,則下列關(guān)于函數(shù)f(x)的說法中正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)的最小正周期為π
C、f(x)在區(qū)間[
π
3
,
12
]
上是增函數(shù)
D、f(x)的圖象關(guān)于點(-
π
6
,0)
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用函數(shù)單調(diào)性定義證明f(x)=x+
2
x
在x∈(0,
2
)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-bx2
(1)當(dāng)b>0時,若對任意x∈R都有f(x)≤1求證a≤2
b

(2)當(dāng)b>1時,求證;對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的x,y∈R,那么輸出的S的最大值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(2α+π)
sin(α-
π
4
)
=
2
2
,則sinα+cosα的值為(  )
A、-
7
2
B、-
1
2
C、
1
2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是周期為2的偶函數(shù),且在x∈[0,1]時,f(x)=x,若直線kx-y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個公共點,則k的取值范圍是( 。
A、(0,
1
2
)
B、(0,
1
2
]
C、(
1
4
,
1
2
)
D、[
1
4
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a1nx-ax-3(a≠0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,那么實數(shù)m在什么范圍取值時,函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間(2,3)內(nèi)總存在極值?
(3)求證:
1n2
2
×
1n3
3
×
1n4
4
×
1n5
5
×
1nn
n
1
n
(n≥2,n∈N*)

查看答案和解析>>

同步練習(xí)冊答案